Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

TEORI PROBABILITAS DERAJAT RISIKO VALUE AT RISK

Presentasi serupa


Presentasi berjudul: "TEORI PROBABILITAS DERAJAT RISIKO VALUE AT RISK"— Transcript presentasi:

1 TEORI PROBABILITAS DERAJAT RISIKO VALUE AT RISK
PENGUKURAN RISIKO TEORI PROBABILITAS DERAJAT RISIKO VALUE AT RISK Resista Vikaliana 4/12/2013

2 TEORI PROBABILITAS Resista Vikaliana 4/12/2013

3 Pengukuran Risiko Tujuan pengukuran risiko:
Nilai rata-rata dari kerugian selama suatu periode anggaran Variasi nilai kerugian dari satu periode anggaran ke periode anggaran yang lain Dampak keseluruhan dari kerugian-kerugian tersebut, terutama kerugian yang ditanggung sendiri Resista Vikaliana 4/12/2013

4 Besarnya kemungkinan kejadian
Dimensi yang diukur: Besarnya kemungkinan kejadian Besarnya kerugian bila suatu risiko terjadi Resista Vikaliana 4/12/2013

5 Konsep Probabilitas dalam Pengukuran Kerugian Potensial
Sample Space dan Event Sample Space (Set S): Suatu rangkaian dari kejadian tertentu yang diamati, misalnya jumlah kecelakaan mobil di wilayah tertentu selama periode tertentu. Bisa terdiri dari beberapa segmen (sub-set) atau event (Set E) Setiap Set E diberi bobot. Bobot berdasarkan bukti empiris masa lalu. Resista Vikaliana 4/12/2013

6 Bila tanpa bobot P (E) = E/S Bila dengan bobot P (E) = W (E)/W (S)
Misal pada kecelakaan mobil, mobil pribadi diberi bobot 2, sedangkan mobil penumpang umum diberi bobot 1, sehingga bobotnya Bila tanpa bobot P (E) = E/S Bila dengan bobot P (E) = W (E)/W (S) P(E) : probabilitas terjadinya event E : sub set atau event S : sample space atau set W : bobot dari masing-masing event Resista Vikaliana 4/12/2013

7 Contoh : Seorang kontraktor diminta untuk membangun sebuah gedung. Apabila segala sesuatu berjalan dengan baik, maka ia akan mendapatkan keuntungan sebesar Rp Karena menyadari selalu adanya hal-hal yang tidak terduga, maka probabilitas untuk mendapatkan keuntungan tersebut diperkirakan hanya 80%, dimana yang 20% adalah pengeluaran tak terduga. Resista Vikaliana 4/12/2013

8 Bisa juga dengan mengalihkan ke pihak lain, misal perusahaan asuransi
Dari data itu, pihak kontraktor dapat mempertimbangkan kesempatan-kesempatan atau kemungkinan-kemungkinan lain sehubungan dengan perputaran, misalnya. Bisa juga dengan mengalihkan ke pihak lain, misal perusahaan asuransi Resista Vikaliana 4/12/2013

9 Expected Value of Contract
Probabilitas Hasil Expected Value 80% Rp Rp 20 % Rp Rp 100% Rp Resista Vikaliana 4/12/2013

10 Compound Event yang Bebas
COMPOUND EVENTS Terjadinya dua atau lebih peristiwa terpisah dalam jangka waktu yang sama Compound Event yang Bebas Jika terjadinya satu peristiwa tidak ada hubungannya dengan peristiwa lain Compound Event Bersyarat Jika terjadinya peristiwa yang satu mempengaruhi terjadinya peristiwa yang lain Resista Vikaliana 4/12/2013

11 CONTOH Compound Event yang Bebas
Probabilitas terbakarnya gudang A tidak dipengaruhi oleh terbakarnya gedung B. Bila probabilitas terbakarnya gudang A adalah 1/10 da gudang B adalah 1/30, maka probabilitas terbakarnya gudang A dan gudang B adalah 1/10 x 1/ = 1/300 Jadi, P (A dan B) = P (A) x P (B) Resista Vikaliana 4/12/2013

12 Probabilitas dari semua kemungkinan kejadian adalah Kemungkinan I:
Gudang A terbakar dan gudang B tidak terbakar adalah (1/10) x(1-1/30) = 29/300 Kemungkinan II: Gudang A tidak terbakar, tetapi gudang B terbakar adalah (1-1/10) x (1/30) = 9/300 Kemungkinan III: Gudang A dan gudang B tidak terbakar adalah (1-1/10) x (1-1/30) = 261/300 Kemungkinan IV: Gudang A dan gudang B terbakar adalah (1/10) x (1/30) =1/300 Jumlah probabilitas keempat kemungkinan kejadian tersebut adalah 300/300 = 1 Resista Vikaliana 4/12/2013

13 CONTOH compound event bersyarat
Perusahaan Y mempunyai dua gudang yang berdekatan, yaitu A dan B. Kebakaran pada gudang A akan mempengaruhi gudang B. Bila probabilitas terbakarnya gudang A adalah 1/40 dan probabilitas terbakarnya gudang B juga 1/40, serta probabilitas terbakarnya gudang B setelah gudang A terbakar atau P(B/A) adalah 1/3,maka probabilitasnya Resista Vikaliana 4/12/2013

14 Gudang A terbakar dan gudang B terbakar adalah (1/40) x(1/3) = 1/120
Probabilitas Kemungkinan I: Gudang A terbakar dan gudang B terbakar adalah (1/40) x(1/3) = 1/120 Kemungkinan II: Gudang A terbakar, tetapi gudang B tidak terbakar adalah 1/40 x (1-1/3) = 2/120 Kemungkinan III: Gudang A tidak terbakar dan gudang B terbakar adalah (1-1/40) x 1/3 = 39/120 Kemungkinan IV: Gudang A tidak terbakar dan gudang B tidak terbakar adalah (1-1/40) x (1-1/3) = 78/120 Jumlah probabilitas keempat kemungkinan kejadian tersebut adalah 120/120=1 Resista Vikaliana 4/12/2013

15 Event yang independen dan acak
Prinsip keacakan (setiap event mempunyai kesempatan dan probabilitas yang sama) dan independensi/ berdiri sendiri mempunyai peran yang penting,khususnya pada bidang asuransi, karena: Underwriter/ perusahaan asuransi akan berusaha untuk mengklasifikasikan unit-unit esposures ke dalam kelompok-kelompok, di mana kejadian atau kerugian dapat dianggap sebagai event yang independen. Resista Vikaliana 4/12/2013

16 PENGUKURAN BESARNYA KERUGIAN
pengukuran sebaiknya dilakukan dengan menggunakan satuan uang Dalam hal tertentu kadang-kadang juga digunakan skala, misal skala 1-5 1 : kerugian yang sangat kecil 2 : kerugian yang kecil 3 : kerugian menengah 4 : kerugian besar 5 : kerugian sangat besar Resista Vikaliana 4/12/2013

17 KEMUNGKINAN TERJADI KECELAKAAN (LIKELIHOOD)
Likelihood: Kesempatan akan terjadinya sesuatu benar-benar terjadi Kategori likelihood: Very likely : mungkin terjadi berkali-kali Likely : mungkin terjadi kadang-kadang Unlikely : mungkin terjadi, tetapi jarang Highly unlikely: mungkin terjadi tetapi sangat tidak mungkin pernah terjadi Resista Vikaliana 4/12/2013

18 Untuk mengevaluasi likelihood kecelakaan, faktor yang memodifikasi kategori tersebut adalah ancaman:
Very rare: sekali dalam setahun atau kurang Rare : beberapa kali dalam setahun Unusual : sekali dalam setahun Occasional : sekali seminggu Frequent : setiap hari Continuous: terus menerus Resista Vikaliana 4/12/2013

19 Contoh : mesin pencetak lubang besi
Operatornya menghadapi risiko cedera/ kecelakaan satu kali dalam 34,75 minggu. Ancaman risikonya “very rare” tetapi “likelihood” terjadi kecelakaan (cedera) hampir pasti terjadi kesalahan pengendalian Resista Vikaliana 4/12/2013

20 Konsekuensi/ Akibat kejadian: Fatal : kematian
Major injuries : kerugian luka-luka yang tidak dapat diubah atau gangguan kesehatan yang membutuhkan waktu lama dalam perbaikan Minor injuries : luka-luka bisa diubah, atau gangguan kesehatan hanya dalam hitungan hari Negligible injuries : cukup dengan pertolongan pertama dapat kembali berfungsi seperti biasa Resista Vikaliana 4/12/2013

21 Qonsequence Likelihood Very Likely Likely Unlikely Highly Unlikely
Fatality HIGH MEDIUM Major injuries Minor injuries LOW Negligible Injuries Resista Vikaliana 4/12/2013

22 Setiap kejadian merugikan, terdapat dampak langsung dan tidak langsung
Untuk kerugian langsung, terdapat beberapa konsep yang dapat digunakan:nilai perolehan, nilai buku, nilai pasar dan nilai ganti Untuk kerugian tidak lansung, antara lain berupa biaya sewa dan berkurangnya pendapatan (sebagian kerugian langsung sangat sulit ditentukan) Resista Vikaliana 4/12/2013

23 Derajat Risiko Resista Vikaliana 4/12/2013

24 Besarnya risiko objektif yang timbul dalam satu situasi
Probable variation of actual from expected losses Objective Risk = Expected losses Simpangan kemungkinan kerugian aktual dengan kerugian yang diharapkan Kerugian yang diharapkan Resista Vikaliana 4/12/2013

25 Maka, derajat bangunan terbakar pada masing –masing kota adalah
Misal : Kemungkinan kerugian karena kebakaran bangunan di Kota ABC dan XYZ dengan jumlah bangunan setiap kota Rata-rata bangunan terbakar setiap tahun pada tiap kota adalah 100 bangunan. Ahli statistik mengestimasi jumlah kebakaran pada Kota ABC tahun depan adalah bangunan. Kisaran pada Kota XYZ Maka, derajat bangunan terbakar pada masing –masing kota adalah Risiko ABC (105-95)/100 = 10 % Risiko XYZ (120-80)/100 = 40 % Resista Vikaliana 4/12/2013

26 VALUE AT RISK Resista Vikaliana 4/12/2013

27 Ada tiga metode perhitungan Value at Risk yaitu:
Metode historis Metode variance-covariance Metode dengan simulasi Monte Carlo. Resista Vikaliana 4/12/2013

28 Sekarang istilah statistik kita nyatakan dalam persentase dan rupiah :
Dengan tingkat kepercayaan 95%, kita berharap kerugian harian terburuk tidak akan melebihi 4%. Jika kita investasi sebesar Rp. 100 juta, kita percaya 95% bahwa kerugian harian terburuk tidak akan melebihi Rp. 4 juta (Rp. 100 juta x - 4%). Jika kita ingin menaikkan tingkat kepercayaan, kita perlu memindahkan ke kiri pada grafik histogram yang sama. Pada return -8% dan -7% merupakan 1% return terburuk harian atau dinyatakan dalam kalimat : Dengan tingkat kepercayaan 99%, kita berharap bahwa kerugian ahrian terburuk tidak akan melebihi 7%. Atau jika kita investasi Rp. 100 juta, kita percaya 99% bahwa kerugian harian terburuk tidak akan melebihi Rp. 7 juta. Resista Vikaliana 4/12/2013

29 Metode Variance – Covariance
Metode ini mengansumsikan bahwa return saham QQQ memiliki distribusi normal dengan demikian kita hanya memerlukan estimasi dua faktor yaitu expected return (rata-rata return) dan standar deviasi return. Ide dibalik variance – covariance adalah sama dengan metode historis, kecuali kita menggunakan kurva normal bukan data actual. Keunggulan kurva normal, kita secara otomatis mengetahui di mana letak 5% atau 1% return terburuk dalam kurva. Berikut ini hasil distribusi return harian saham QQQ Resista Vikaliana 4/12/2013

30 5% dan 1% return terburuk merupakan fungsi dari tingkat kepercayaan dan standar deviasi (σ)
Nilai kepercayaan 95% memberikan nilai faktor (confidence factor) 1.65 dengan asumsi distribusi normal, begitu juga tingkat kepercayaan 99% memberikan nilai faktor 2.33. Jika diketahui bahwa standar deviasi dari distribusi return harian saham QQQ adalah , maka besarnya Value at Risk dapat dihitung seperti tabel dibawah ini: Resista Vikaliana 4/12/2013

31 Confidence #of standard Deviations (σ)
95% (high) -1.65 x σ 99% (really high) -2.33 x σ Nilai kepercayaan 95% memberikan nilai faktor (confidence factor) 1.65 dengan asumsi distribusi normal, begitu juga tingkat kepercayaan 99% memberikan nilai faktor 2.33. Resista Vikaliana 4/12/2013

32 Jika diketahui bahwa standar deviasi dari distribusi return harian saham QQQ adalah 2.645, maka besarnya Value at Risk dapat dihitung seperti tabel dibawah ini: Dengan tingkat kepercayaan 95%, kita berharap bahwa kerugian harian terburuk tidak melebihi 4.36% Dengan tingkat kepercayaan 99%, kita berharap bahwa kerugian harian terburuk tidak melebihi 6.16% Confidence # of σ Calculation Equals: 95% (high) -1.65 x σ -1.65 x (2.64%) -4.36 99% (really high) -2.33 x σ -2.33 x (2.64%) -6.16 Resista Vikaliana 4/12/2013

33 Konversi dari Satu Periode Waktu ke Periode Waktu Lainnya
Karena periode waktu merupakan salah satu variabel untuk menghitung VaR, maka kita dapat menghitung VaR dengan periode waktu yang berbed satu bulan atau satu tahun. Berikut ini adalah ringkasan hasil VaR dengan tiga metode yang telah kita bahas diatas: Investment Var Method Standard Deviation Time Period Calculated VAR QQQ Historical N/A Daily ~ -4.0% Variance Covariance 2.64% -6.16% Monte Carlo Simulation Monthly -15% Resista Vikaliana 4/12/2013

34 σMounthly = σDaily x T = 2.64% x 20
Pengguna VaR dapat mengkonversikan satu periode waktu ke periode waktu lainnya dengan mendasarkan pada ide klasik di ilmu manajemen keuangan yang menyatakan bahwa standar deviasi return suatu saham cenderung meningkat sebesar akar kuadrat dari waktu. Jika standar deviasi return harian adalah 2.64% dan ada 20 hari perdagangan dalam satu bulan (T = 20), maka standar deviasi bulanan dapat dihitung sebagai berikut: σMounthly = σDaily x T = 2.64% x 20 Resista Vikaliana 4/12/2013

35 Untuk mengubah standar deviasi harian menjadi standar deviasi bulanan kita tidak mengalikan dengan angka 20, tetapi dengan akar 20. Dengan cara yang sama jika kita ingin merubah standar deviasi harian menjadi tahunan (asumsi ada 250 hari perdagangan dalam setahun), maka standar deviasi harian dikalikan dengan akar Sedangkan merubah standar deviasi bulanan menjadi tahunan dikalikan dengan akar 12. Resista Vikaliana 4/12/2013

36 TUGAS RINGKASAN DIKUMPULKAN SAAT UTS MERINGKAS MAKSIMAL 10 HALAMAN
KERTAS UKURAN A4 HURUF 12 BAHAN BISA DICOPY DI PER[USTAKAAN Resista Vikaliana 4/12/2013


Download ppt "TEORI PROBABILITAS DERAJAT RISIKO VALUE AT RISK"

Presentasi serupa


Iklan oleh Google