Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Design and Analysis of Algorithm Recursive Algorithm Analysis Aryo Pinandito, ST, M.MT - PTIIK UB.

Presentasi serupa


Presentasi berjudul: "Design and Analysis of Algorithm Recursive Algorithm Analysis Aryo Pinandito, ST, M.MT - PTIIK UB."— Transcript presentasi:

1 Design and Analysis of Algorithm Recursive Algorithm Analysis Aryo Pinandito, ST, M.MT - PTIIK UB

2 Apa itu fungsi rekursif?  Fungsi yang memanggil dirinya sendiri  Sebuah fungsi f juga merupakan fungsi rekursif jika memanggil fungsi lain g dan di dalam g terdapat pemanggilan f. f f g g start f f end

3 Sifat Penyelesaian Masalah dengan Rekursif  Permasalahan yang dapat diselesaikan oleh fungsi rekursif memiliki sifat:  Memiliki kasus sederhana yang dapat langsung diselesaikan (base case). Contoh 0! = 1.  Kasus yang kompleks dapat diuraikan menjadi kasus yang identik dengan ukuran yang lebih kecil (recursive cases). Contoh: n! = n * (n-1)!  Dengan menerapkan karakteristik 2 berulang-ulang, recursive cases akan mendekati dan sampai pada base case. Contoh: n!  (n-1)!  (n-2)! ... 1!, 0!.

4 Fungsi Rekursif: Tree

5 Format fungsi rekursif if current case is base case then solve it else redefine the problem using recursion case

6 Format fungsi rekursif  Cabang if berisi base case, sedangkan bagian else- nya berisi recursive case  Agar rekursi dapat berhenti input pada recursive cases harus mendekati base case di setiap pemanggilan fungsi rekursif

7 Latihan  Buatlah fungsi rekursif untuk menghitung nilai X n.  Buat pohon rekursif untuk 4 5.

8 Jawaban  Algoritma: pangkat(X, n)  algoritma untuk menghitung nilai X n secara rekursif  input : integer positif X dan n  output : nilai X n if n == 1 return X else return (X * pangkat(X, n-1))  Pohon rekursif?

9 Latihan  Buatlah fungsi rekursif untuk menghitung bilangan fibonacci ke n.  Buat pohon rekursif untuk fibonacci(4).

10 Jawaban  Algorithm fibonacci(n)  // algoritma untuk menghitung bilangan fibonacci ke n  // secara rekursif  // input : n  // output : bilangan fibonacci ke n if n = 0 or n = 1 return n else return (fib(n - 1) + fib(n - 2))  Pohon rekursif?

11 Analisa Efisiensi Algoritma Rekursif  Algorithm pangkat(X, n)  //algoritma untuk menghitung nilai Xn secara rekursif  //input : integer positif X dan n  //output : nilai Xn if n == 1 return X else return (X * pangkat(X, n-1))  Analisis efisiensi waktu algoritma rekursif!

12 Langkah-langkah Umum Analisis Efisiensi Waktu Algoritma Rekursif  Tentukan metrik untuk ukuran input  Identifikasi basic operation algoritma  Tentukan apakah untuk ukuran input yang sama banyaknya eksekusi basic operation bisa berbeda  Tentukan persamaan rekursi yang menunjukkan berapa kali basic operation dieksekusi  Cari rumus langsung yang menunjukkan banyaknya basic operation dieksekusi

13 1: Metrik Untuk Ukuran Input  Sesuatu pada input yang jika membesar, maka banyaknya pemanggilan fungsi rekursif bertambah  Pada kasus ini adalah nilai n. Jika n membesar, maka banyaknya komputasi atau pemanggilan fungsi rekursi bertambah  Untuk memahaminya coba gambar pohon rekursifnya.  Efisiensi dinyatakan sebagai fungsi dari n

14 2: Basic operation  Pada algoritma rekursif merupakan salah satu operasi pada kondisi seleksi base case atau bagian recursive case  Basic operationnya dipilih = yang dilakukan 1 kali setiap kali fungsi rekursif dipanggil if n == 1

15 3: Case  Apakah ada best case, average case dan worst case?  Untuk input n tertentu misal 5, recursion treenya selalu sama. Banyaknya komputasi / pemanggilan fungsi rekursif tetap.  Tidak ada best case, average case dan worst case Pada fungsi rekrusif.

16 4: Persamaan Rekursif Banyaknya Eksekusi Basic Operation  Jika algoritma pangkat dieksekusi dengan input (X, n) maka basic operation dieksekusi satu kali. Namun pada saat eksekusi, algoritma tersebut juga memanggil dirinya sendiri dengan input (X, n-1).  Hal ini menyebabkan secara internal basic operation dieksekusi lagi.  Berapa kali banyaknya basic operation dieksekusi untuk input n? if n == 1

17 4: Persamaan Rekursif Banyaknya Eksekusi Basic Operation  Jika C(n) menyatakan banyaknya basic operation dieksekusi untuk input berukuran n dan C(n - 1) menyatakan banyaknya basic operation dieksekusi untuk input berukuran n-1,  Hubungan C(n) dan C(n - 1) dinyatakan dengan C(n) = C(n-1) + 1 untuk n>1 (recursive case) C(1) = 1, base case

18 4: Persamaan Rekursif Banyaknya Eksekusi Basic Operation  Untuk mengetahui kelas efisiensi waktunya kita harus menemukan persamaan langsung (non recursive) dari C(n)

19 Perhitungan efisiensi waktu  Menggunakan metode backward substitution, cari pola dari C(n) : C(n) = C(n - 1) + 1 C(n) = (C(n - 2) + 1) + 1 = C(n) = C(n - 2) + 2 C(n) = (C(n - 3) + 1) + 2 = C(n) = C(n - 3) + 3 dst  Pola atau bentuk umum yang didapatkan adalah C(n) = C(n - i) + i.

20 Perhitungan efisiensi waktu  Nilai initial condition C(1) disubtitusikan ke C(n - i) pada bentuk umum C(n). C(n) = C(n - i) + i C(n) = C(1) + i C(n) = i + 1

21 Perhitungan efisiensi waktu  Subtitusi tersebut mensyaratkan C(n - i) = C(1) atau n – i = 1 i = n – 1  Nilai i = n – 1 disubtitusikan ke bentuk umum C(n) = i + 1 sehingga: C(n) = n – C(n) = n C(n) merupakan anggota kelas efisiensi n  Apa artinya?

22 CS3024-FAZ22 Example 2: Tower of Hanoi (1)  n disks on different sizes and three pegs  Initially, all disks are on the first peg in order of size. The largest on the bottom and the smallest on top  The goal: move all disks to the third peg, using the second one as an auxiliary  Move only one disk at a time  It is forbidden to place a larger disk on top of a smaller one

23 Example 2: Tower of Hanoi (2)

24 Tower of Hanoi: Recursive Solution (1)

25 ToH: Recursive Solution (2)  To move n>1 disks from peg 1 to peg 3 (with peg 2 as an auxiliary):  Move recursively n-1 disk(s) from peg 1 to peg 2 (with peg 3 as an auxiliary)  Move the largest disk from peg 1 to peg 3  Move recursively n-1 disk(s) from peg 2 to peg 3 (with peg 1 as an auxiliary)

26 Recursive Pseudocode FUNCTION MoveTower(disk, source, dest, spare): IF disk == 0, THEN: move disk from source to dest ELSE: MoveTower(disk - 1, source, spare, dest) move disk from source to dest MoveTower(disk - 1, spare, dest, source) END IF

27 ToH: Analysis (1)  Input ' s size = the number of disks = n  Basic operation = moving one disk  The number of moves M(n) depends on n only: M(n) = M(n-1) M(n-1) ; for n>1  Recurrence relation:  M(n) = 2M(n-1) + 1 ; for n>1  M(1) = 1  initial condition

28 ToH: Analysis (2)  Backward substitution: M(n) = 2M(n-1) + 1 = 2[2M(n-2)+1]+1=2 2 M(n-2)+2+1 = 2 2 [2M(n-3)+1]+2+1=2 3 M(n-3) = 2 4 M(n-4)  The pattern, after i substitution: M(n) = 2 i M(n-i) + 2 i i = 2 i M(n-i) + 2 i - 1

29 ToH: Analysis (3)  Initial condition, n=1  i=n-1: M(n) = 2 i M(n-i) + 2 i - 1 = 2 (n-1) M(n-(n-1)) + 2 (n-1) -1 = 2 (n-1) M(1) + 2 (n-1) - 1 = 2 (n-1) + 2 (n-1) - 1 = 2 n - 1  Exponential algorithm!  This is the most efficient algorithm  It is the problem's intrinsic difficulty that makes it so computationally difficult

30 Exercises (2) Algorithm S(n) //input: a positive integer n if n = 1 return 1 else return S(n-1)+n*n*n a. What does this algorithm compute? b. Set up and solve a recurrence relation for the number of times the basic operation is executed c. How does this algorithm compare with the straightforward non recursive algorithm for computing this function?

31 CS3024-FAZ31 Exercises (3) 3. Write an algorithm to find the n-th Fibonacci number recursively by using its definition. Is it more efficient than the iterative algorithm to find the same number?

32 Exercises (4) 4. In the original version of the Tower of Hanoi puzzle (Edouard Lucas, 1890), the world will end after 64 disks have been moved from a mythical Tower of Brahma. a. Estimate the number of years it will take if priests could move one disk per minute (they do not eat, sleep, or die) b. How many moves are made by the i-th largest disk (1≤i ≤n) in this algorithm?

33 Questions?

34 Terima Kasih Thank You Danke Gratias Merci ありがとうございます 감사합니 다 Kiitos 谢谢 ﺷﻜﺮﺍ ﹰ Grazias धन्यवाद


Download ppt "Design and Analysis of Algorithm Recursive Algorithm Analysis Aryo Pinandito, ST, M.MT - PTIIK UB."

Presentasi serupa


Iklan oleh Google