Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010.

Presentasi serupa


Presentasi berjudul: "KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010."— Transcript presentasi:

1 KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010

2 THERMO vs. HEAT TRANSFER Thermodynamics stems from the Greek words therme (heat) and dynamis (power or motion), which is most descriptive of the early efforts to convert heat into power. Today thermodynamics is broadly interpreted to include all aspects of energy and energy transformations, including power generation, refrigeration, and relationships among the properties of matter. Heat transfers the science that deals with the determination of the rates of such energy transfer.

3 THERMO vs. HEAT TRANSFER (cont) Thermodynamics membicarakan sistem keseimbangan (equilibrium), bisa digunakan untuk menaksir besarnya energi yang diperlukan untuk mengubah suatu sistem keseimbangan, tetapi tidak dapat dipakai untuk menaksir seberapa cepat (laju) perubahan itu terjadi karena selama proses sistem tidak berada dalam keseimbangan. Heat Transfer tidak hanya menerangkan bagaimana energi itu dihantarkan, tetapi juga menaksir laju penghantaran energi. Inilah yang membedakan Heat Transfer dengan thermodinamika.

4 APLIKASI Tubuh manusia Meniup kopi panas Perkakas elektronik (sirip, heat sink) Refrigerator (AC, Kulkas) Mobil (siklus engine, sirip, radiator) Pembangkit listrik (turbin, boiler) Industri (penyulingan, pendinginan, pengeringan, dll).

5 DIMENSI dan SATUAN Dimensi (M,L,T,θ)  homogen Satuan : SI Units (m, s, kg, K) Kesalahan umum: 1. Tidak paham homogenitas 2. Usaha minimal, kurang latihan 3. Tidak terampil melakukan konversi satuan Trik: perhitungan harus menyertakan satuan

6 SECONDARY UNITS Secondary units can be formed by combinations of primary units. Example: F = m.a P = F/A

7 SISTEM vs. LINGKUNGAN A system is defined as a quantity of matter or a region in space chosen for study. The mass or region outside the system is called the surroundings. The real or imaginary surface that separates the system from its surroundings is called the boundary

8 CLOSSED vs. OPEN SYSTEMS Closed system (= control mass): Mass can’t cross the boundary, but energy can. Volume of a closed system may change. Special case, if no energy cross the boundary, that system is called an isolated system.

9 CLOSSED SYSTEM A closed system with a moving boundary.

10 OPEN vs. CLOSSED SYSTEMS Open system (= control volume) is a properly selected region in space. It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle. Both mass and energy can cross the boundary of a control volume. The boundaries of a control volume are called a control surface, and they can be real or imaginary.

11 OPEN SYSTEM

12 Open system (= control volume) with one inlet and one outlet (exit) and a real boundary.

13 SIFAT-SIFAT SISTEM TERMODINAMIKA Any characteristic of a system is called a property. Some familiar properties are pressure P, temperature T, volume V, and mass m. The list can be extended to include less familiar ones such as viscosity, thermal conductivity, modulus of elasticity, thermal expansion coefficient, electric resistivity, and even velocity and elevation. Intensive properties are those that are independent of the mass of a system, such as temperature, pressure, and density. Extensive properties are those whose values depend on the size—or extent—of the system. Extensive properties per unit mass are called specific properties (specific volume (v = V/m), specific energy (e = E/m).

14 SIFAT INTENSIF vs. EKSTENSIF TUGAS (dikumpul Senin) : Sebuah apel dibelah dua. Buatlah daftar sifat intensif dan ekstensifnya Criterion to differentiate intensive and extensive properties.

15 SIFAT-SIFAT SISTEM PENTING Densitas atau massa jenis: masa per satuan volume Volume spesifik, kebalikan dari densitas: volume per satuan masa (m 3 /kg) Densitas relatif atau specific gravity: nisbah densitas suatu substansi dengan densitas substansi standar pada suhu tertentu (biasanya air pada 4 o C di mana  = 1000 kg/m 3 )

16 ENERGY SISTEM TERMODINAMIKA BENTUK ENERGI: 1. Energi Kinetik (KE)  2. Energi Potensial (PE)  PE = mgh 3. Energi dakhil atau Internal Energy (U) ENERGI TOTAL: E = U + KE + PE e = u + ke + pe(per satuan massa)

17 POSTULAT KEADAAN All properties (can be measured or calculated) completely describes the condition, or the state, of the system. At a given state, all the properties of a system have fixed values. If the value of even one property changes, the state will change to a different one. The number of properties required to fix the state of a system is given by the state postulate: The state of a simple compressible system is completely specified by two independent, intensive properties.

18 PROSES dan SIKLUS Any change that a system undergoes from one equilibrium state to another is called a process The series of states through which a system passes during a process is called the path (lintasan) of the process.

19 MACAM-MACAM PROSES Proses isotermal: proses pada suhu T konstan. Proses isobaris: proses pada tekanan P konstan. Proses isokhoris (isometris): proses pada volume spesifik konstan. Proses adiabatik: proses di mana tidak terjadi pertukaran kalor dengan lingkungan. Proses isentropik: proses pada entropi S konstan.

20 STEADY-FLOW PROCESS The terms steady and uniform are used frequently in engineering, and thus it is important to have a clear understanding of their meanings. The term steady implies no change with time. The opposite of steady is unsteady, or transient. The term uniform, however, implies no change with location over a specified region.

21 PROSES dan SIKLUS A system undergoes a cycle if it returns to its initial state at the end of the process. Siklus dengan 2 lintasanSiklus dengan 4 lintasan

22 TEKANAN Tekanan (P) : gaya (F) per satuan luas (A). Satuan tekanan adalah pascal (Pa) = N/m 2. Untuk benda padat gaya per luas satuan tidak disebut tekanan, tetapi tegangan (stress). Untuk fluida diam, tekanan adalah sama ke segala arah. Tekanan di dalam fluida meningkat sesuai dengan kedalamannya akibat berat fluida (pengaruh gravitasi) sehingga fluida pada bagian bawah menanggung beban yang lebih besar daripada fluida di bagian atas. Tetapi tekanan tidak bervariasi pada arah horisontal. Tekanan gas di dalam tangki dapat dianggap seragam karena berat gas terlalu kecil dan tidak mengakibatkan pengaruh yang berarti.

23 TEKANAN: UKUR, ATM, VAKUM Tekanan aktual pada posisi tertentu disebut tekanan absolut dan diukur secara relatif terhadap tekanan vakum, yaitu tekanan nol mutlak. Kebanyakan pengukur tekanan dikalibrasi untuk membaca nol di atmosfer (tekanan atmosfer lokal). Perbedaan tekanan absolut dan tekanan atmosfer disebut tekanan ukur (pressure gage). Tekanan di bawah tekanan atmosfer disebut tekanan vakum (vacuum pressure) dan diukur dengan pengukur vakum yang menunjukkan perbedaan antara tekanan atmosfer dan tekanan absolut. P gage = P abs – P atm (untuk P > P atm ) P vac = P atm – P abs (untuk P < P atm )

24 TEKANAN UKUR, TEKANAN ATMOSFER, TEKANAN VAKUM

25 PENGUKUR TEKANAN PRESSURE GAGE MANOMETER BAROMETER

26 PRINSIP MANOMETER Perhatikan gambar: Seimbang   F = 0 P 1 = P 2 A P 1 = A P atm + W di mana W = m g =  V g =  A h g P 1 = P atm +  h g  P = P 1 - P atm =  h g = Tekanan ukur di dalam tangki

27 EXAMPLE : Manometer A manometer is used to measure the pressure in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in Figure. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank.

28 EXAMPLE: SOLUTION

29 EXAMPLE: MULTIFLUID MANOMETER Water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer (see Figure). The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h 1 = 0.1 m, h 2 = 0.2 m, and h 3 = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m 3, 850 kg/m 3, and 13,600 kg/m 3, respectively.

30 SOLUTION

31 APLIKASI MANOMETER P 1 +  1 g(a + h) -  2 gh -  1 ga = P 2 P 1 - P 2 = (  2 -  1 )gh Untuk  2 >>  1 : P 1 - P 2 ≈  2 g h Measuring the pressure drop across a flow section or a flow device by a differential manometer:

32 BAROMETER Torricelli P atm =  g h

33 EXAMPLE3: BAROMETER Determine the atmospheric pressure at a location where the barometric reading is 740 mm Hg and the gravitational acceleration is g 9.81 m/s2. Assume the temperature of mercury to be 10 o C, at which its density is 13,570 kg/m 3.

34 EXAMPLE3: SOLUTION

35 TEKANAN ATMOSFER ELEVASI (m) TEKANAN (kPa) TEKANAN (mmHg) 0 (sea level) , , Rule of thumb: naik 10 m, tekanan atmosfer turun 1 mmHg

36 EFEK KETINGGIAN “….and whomsoever He wills to send astray, He makes his breast closed and constricted, as if he is climbing up to the sky. Thus Allah puts the wrath on those who believe not.” (QS, 6:125)

37 TEMPERATURE Thermodinamika  SUHU MUTLAK Satuan kelvin (K) untuk SI Satuan renkine (R) untuk USCS Konversi: T(K) = T( o C) T(R) = T( o F) T( o C) = 1.8T( o C) + 32 T(R) = 1.8 T(K) CAUTION:  T(K) =  T( o C)  T(R) =  T( o F)

38 EXAMPLE4: TEMPERATURE During a heating process, the temperature of a system rises by 10°C. Express this rise in temperature in K, °F, and R.

39 PR: Soal No: 1-6C, 1-7C, 1-15C, 1-16C, 1-17C, 1- 20C, 1-21C, 1-22C, 1-23C, 1-24C, 1-29, 1-31, 1- 34C, 1-35C, 1-36C, 1-39C, 1-40, 1-42, 1-43, 1-44, 1-45, 1-48, 1-51, 1-53, 1-55, 1-57, 1-59, 1-61, 1-62, 1-63, 1-65, 1-66, 1-73, 1-85, 1-88, 1-101, 1-103, 1-105, 1-106, 1-108, 1-120, , 1-122, 1-123, Mhs : 1 Concepts + 1 soal


Download ppt "KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010."

Presentasi serupa


Iklan oleh Google