Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Model Logistik untuk Data Ordinal (Ordinal Regression) Analisis Data Kategorik Pertemuan X.

Presentasi serupa


Presentasi berjudul: "Model Logistik untuk Data Ordinal (Ordinal Regression) Analisis Data Kategorik Pertemuan X."— Transcript presentasi:

1 Model Logistik untuk Data Ordinal (Ordinal Regression) Analisis Data Kategorik Pertemuan X

2 Ordinal Regression

3 When you see a positive coefficient for a dichotomous factor, you know that higher scores are more likely for the first category. A negative coefficient tells you that lower scores are more likely. For a continuous variable, a positive coefficient tells you that as the values of the variable increase, the likelihood of larger scores increases. An association with higher scores means smaller cumulative probabilities for lower scores, since they are less likely to occur.

4 Ordinal Regression

5 Ordinal Regression dengan SPSS Untuk dependent variabel, SPSS memodelkan probabilitas setiap level atau dibawahnya (bukan setiap level atau di atasnya) Secara otomatis, SPSS mengambil kategori terakhir sebagai reference category Contoh: Level awal kelas bahasa inggris (Y), dengan gender (X; boys = 0, girls = 1). LSYPE.savLSYPE.sav Analyses > Regression > Ordinal GenderLEVEL Boys Girls

6

7

8 We compare the final model (model with all explanatory variables) against the baseline (model without any explanatory variables) to see whether it has significantly improved the fit to the data. The statistically significant chi-square statistic (p<.0005) indicates that the Final model gives a significant improvement over the baseline intercept-only model.statistically significantchi-square

9 The Deviance (-2LL) Statistic

10

11 These statistics are intended to test whether the observed data are consistent with the fitted model. We start from the null hypothesis that the fit is good. If we do not reject this hypothesis (i.e. if the p value is large), then you conclude that the data and the model predictions are similar and that you have a good model.null hypothesisp value Here, the pseudo R 2 values (e.g. Nagelkerke = 3.1%) indicates that gender explains a relatively small proportion of the variation between students in their attainment.Nagelkerke

12 Parameter estimates merupakan tabel inti dimana bisa dilihat hubungan antara variabel penjelas dengan variabel outcome Thresholds tidak diintepretasikan, hanya intercept titik (logit) dimana pelajar diprediksikan ke kategori yang lebih tinggi Odds level 6 atau di bawah level 6 (level = 6) adalah komplemen dari odds berada di level 7, level 5 atau di bawah level 5 (level = 5) adalah komplemen dari odds berada di level 6 ke atas dst

13 Girls = reference category y = a – bx 1/0.53= 1.88, equally 1/1.88=0.53 Proportional odds principle

14 OR (girls as the base) = exp(-.629) = 0.53 OR (boys as the base) = exp(.629) = 1.88 This test compares the ordinal model which has one set of coefficients for all thresholds (labelled Null Hypothesis), to a model with a separate set of coefficients for each threshold (labelled General). If the general model gives a significantly better fit to the data than the ordinal (proportional odds) model (i.e. if p<.05) then we are led to reject the assumption of proportional odds.Null Hypothesisassumption of proportional odds

15 Asumsi Proportional Odds (PO) Cumulative proportion = just the percentage Cumulative odds = 1347/( ), odds mencapai level 7, odds berada di level 6 atau ke atas= 4918/9545 = 0.52 atau p/(1-p) Cumulative logits = ln (cumulative odds)

16 Efek dari variabel penjelas adalah konsisten atau proporsional pada thresholds yang berbeda (SPSS,parallel lines assumption)

17 Remaja putri cenderung untuk memperoleh level yang lebih tinggi daripada remaja putra

18

19 Secara umum odds untuk remaja putri selalu lebih tinggi daripada remaja putra OR bervariasi pada threshold kategori yang berbeda, jika OR ini tidak berbeda secara signifikan maka kita bisa meringkas hubungan antara gender dengan level bahasa inggris dengan OR tunggal dari regresi ordinal

20

21 Ordinal Regression dengan Beberapa Variabel Bebas Sebuah study dilakukan untuk melihat faktor-faktor yang mempengaruhi seseorang untuk mendaftar sekolah ke jenjang lebih tinggi Seorang pelajar ditanya apakah mereka: “tidak akan mendaftar”, “tidak tahu”, dan “akan mendaftar” ke jenjang lebih tinggi. Variabel outcome memiliki tiga kategori (0,1,2) Dikumpulkan juga data mengenai pendidikan orang tua (apakah pendidikan terakhir orang tua adalah S1;0,1), jenis institusi pendidikan (public atau private;0,1), dan GPA. ologit.savologit.sav

22 PLUM apply with pared public gpa /LINK=LOGIT /PRINT=FIT PARAMETER SUMMARY TPARALLEL

23

24

25

26

27 Odds Ratio (ln Estimate) Threshold biasanya tidak disertakan dalam intepretasi proportional OR Untuk pared, setiap kenaikan satu unit pared (dari 0 ke 1), odds untuk mendaftar 2.85 kali lebih besar daripada tidak tahu dan tidak mendaftar, dengan asumsi semua variabel dalam model konstan Demikian juga, odds antara tidak tahu dan mendaftar 2.85 kali lebih besar daripada tidak mendaftar Setiap kenaikan satu unit GPA, odds tidak mendaftar dan tidak tahu 1.85 kali lebih besar daripada yang mendaftar

28 Pendidikan orang tua dan GPA memiliki asosiasi positif untuk kecenderungan mendaftar ke jenjang sekolah yang lebih tinggi Setiap satu unit kenaikan pada pendidikan orang tua, ekspektasi log odds akan bertambah 1.05 setiap kenaikan kategori apply yang lebih tinggi Setiap kenaikan satu unit GPA diharapkan kenaikan ekspektasi log odds sebesar 0.62 pada setiap kenaikan apply yang lebih tinggi Public tidak memberikan efek yang signifikan pada apply

29 Example: Random sample of Vermont citizens was asked to rate the work of criminal judges in the state. The scale was Poor (1), Only fair (2), Good (3), and Excellent (4). At the same time, they had to report whether somebody of their household had been a crime victim within the last 3 years(1=Yes, 2=No).(vermont.sav)vermont.sav Apakah orang dengan riwayat pernah menjadi korban dan orang yang tidak memiliki riwayat pernah menjadi korban memiliki pandangan yang sama mengenai penegakan keadilan?

30 Penambahan variabel baru: sex, age(dua kategori), pendidikan (5 kategori)

31

32

33 Regresi Logistik VS Loglinier Model Regresi logistik adalah model statistika yang digunakan untuk variabel dependen/respon kategorik Loglinier model digunakan jika paling sedikit terdapat dua variabel respon dalam tabel kontingensi. Model akan menjelaskan pola hubungan diantara sekumpulan variabel respon kategorik

34 Loglinier Model dan Regresi Logistik berbeda dalam hal: Distribusi dari variabel kategorik yaitu Poisson bukan binomial Fungsi link yaitu log, bukan logit Prediksi merupkan estimasi dari sel yang dihitung berdasar tabel kontingensi, bukan nilai logit dari dependen

35 Kesesuaian Model Loglinier dan Model Logit Model loglinier dan model logit memiliki struktur yang sama untuk asosiasi antara variabel dependen/respon dan variabel- variabel independen/penjelas Mengandung interaksi yang paling umum untuk hubungan-hubungan diantara variabel-variabel penjelas

36 Kesesuaian Model Loglinier dan Model Logit

37

38


Download ppt "Model Logistik untuk Data Ordinal (Ordinal Regression) Analisis Data Kategorik Pertemuan X."

Presentasi serupa


Iklan oleh Google