Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

William J. Stevenson Operations Management 8 th edition REGRESI Rosihan Asmara

Presentasi serupa


Presentasi berjudul: "William J. Stevenson Operations Management 8 th edition REGRESI Rosihan Asmara"— Transcript presentasi:

1 William J. Stevenson Operations Management 8 th edition REGRESI Rosihan Asmara

2 Model Regresi Sederhana Y i =  0 +  1 X i +  i   0 dan  1 : parameter dari fungsi yg nilainya akan diestimasi.  Bersifat stochastik  untuk setiap nilai X terdapat suatu distribusi probabilitas seluruh nilai Y atau Nilai Y tidak dapat diprediksi secara pasti karena ada faktor stochastik  i yang memberikan sifat acak pada Y.  Adanaya variabel  i disababkan karena:  Ketidak-lengkapan teori  Perilaku manusia yang bersifat random  Ketidak-sempurnaan spesifikasi model  Kesalahan dalam agregasi  Kesalahan dalam pengukuran

3 Ÿ i = b 0 + b 1 X i YiYi ŸiŸi ii X Y Y i =  0 +  1 X i +  i Variation in Y Systematic Variation Random Variation 0 Asumsi-asumsi mengenai  i : 1.  i adalah variabel random yg menyebar normal 2. Nilai rata-rata  i = 0, e(  i ) = Tidak tdpt serial korelasi antar  i cov(  i,  j ) = 0 4. Sifat homoskedastistas, var(  i ) =  2 5. cov(  i,X i ) = 0 6. Tidak terdapat bias dalam spesifikasi model 7. Tidak terdapat multi-collinearity antar variebel penjelas

4 X1X1 X2X2 X3X3 Fungsi Regresi Populasi E(Y i ) =  0 +  1 X i X Y Y i =  0 +  1 X i +  i Nilai rata2 Y i : E(Y i ) =  0 +  1 X i  I = Y i - E(Y i )

5 METODE PENAKSIRAN PARAMETER DALAM EKONOMETRIK Metode estimasi yang sering digunakan adalah Ordinary Least Square (OLS). Dalam regresi populasi dikenal pula adanya istilah PRF (Population Regression Function) dan dalam regresi sampel sebagai penduga regresi populasi dikenal istilah SRF (Sample Regression Function). YiYi eiei uiui 0 XXiXi Y SRF PRF P Yi ^

6 Penaksir kuadrat terkecil adalah mempunyai varian yang minimum yaitu penaksir tadi bersifat BLUE (Best Linear Unbiased Estimator). Asumsi yang harus dipenuhi dalam penaksiran metode OLS adalah sebagai berikut : 1.  i adalah sebuah variabel acak atau random yang riil dan memiliki distribusi normal. 2. Nilai harapan dari  i yang timbul karena variasi nilai X i yang diketahui harus sama dengan nol. E(  i / X i ) = 0 3. Tidak terjadi autokorelasi atau serial korelasi. Artinya, Cov(  i,  j ) = E  i – E(  i )   j – E(  j )  = E(  i,  j ) = i  j 4. Syarat Homoskedastisiti. Artinya bahwa varian dari  i adalah konstan dan sama dengan  2. Var (  i / X i ) = E  i – E(  i )  2 = E(  i ) 2 =  2 5. Tidak terjadi multikolonieritas. Yaitu tidak ada korelasi antara  dengan variabel bebasnya X i atau : Cov(  i, X i ) = E(  i – E(  i ))(X i – E(X i )) = 0

7 Pengujian statistik SECARA PARSIAL mendasarkan pada hipotesis : Uji Konstanta IntersepH0 : ß0 = 0 H1: ß0 ≠ 0 Uji Koeff. X H0 : ß1 = 0 H1: ß1 ≠ 0 REGRESI LINEAR SEDERHANA Y = ß0 + ß1 X Pengujian statistik model secara keseluruhan dilakukan dengan uji-F. Uji F mendasarkan pada dua hipotesis, yaitu : H0 : Semua koefisien variabel bebas adalah 0 (nol) H1: Tidak seperti tersebut di atas

8 Sehingga dapat disajikan hasil sebagai berikut : Konsumsi = *Income R 2 = S.E (6.414) (0.036) t-hitung = F hit = 202,868 Df = 8 Dalam pengertian ekonomi dapat dikatakan bahwa jika terdapat kenaikan income sebesar $ 1 per bulan maka akan mempengaruhi kenaikan pula pada konsumsi sebesar $ Demikian juga bila terjadi penurunan income sebesar $ 1 per bulan maka akan berdampak pada penurunan konsumsi sebesar $ Contoh :

9 Estimasi Parameter Model Regresi Sederhana Y i =  0 +  1 X i +  i Metode Kuadrat Terkecil (Ordinary Least Square – OLS): Prinsip: Meminimumkan nilai error – mencari jumlah penyimpangan kuadrat (  i 2 ) terkecil.  i = Y i -  0 -  1 X i  i 2 = (Y i -  0 -  1 X i ) 2  i 2 =  (Y i -  0 -  1 X i ) 2  i 2 minimum jika:  i 2 /  0 = 0  2  (Y i -  0 -  1 X i ) = 0  i 2 /  1 = 0  2  X i (Y i -  0 -  1 X i ) = 0

10 Sederhanakan, maka didapat:  (X i – X) (Y i – Y) b 1 =  (X i – X) 2 b 0 = Y - b 1 X dimana b 0 dan b 1 nilai penduga untuk  0 dan  1. X dan Y adlh nilai rata2 pengamatan X dan Y Standar error:  2 ½ SE(b 1 ) =  (X i – X) 2  X i 2 ½ SE(b 0 ) = N  (X i – X) 2   diduga dengan s, dimana: s = (  i 2 /n-2) 2 dan  i 2 = (Y i – Y) 2

11 Y i =  1 +  2 X i +  i Ŷ i =  1 +  2 X i Y i = Ŷ i +  i  i = Y i - Ŷ i Persamaan umum Regresi sederhana  1 dan  2 adalah nilai estimasi untuk parameter Ŷi = nilai estimasi model  i = nilai residual (1) (2) (3) (4) (5) Metode Ordinary Least Squares (OLS) n  X i Y i –  X i  Y i  2 = n  X i 2 – (  X i ) 2  (X i – X)(Y i – Y) =  (X i – X) 2 n  x i y i =  x i 2  (X i ) 2  Y i –  X i  X i Y i  1 = n  X i 2 – (  X i ) 2 = Y –  2 X Koefisien parameter untuk  1 dan  2

12 Standard error of the estimates Var(  2 ) =  2 /  X i 2  2  Se(  2 ) = Var(  2 ) = =  X i 2  X i 2  X i 2 Var(  1 ) =  2 n  x i 2  X i 2 Se(  1 ) = Var(  1 ) =  2 n  x i 2   i 2  2 =   i 2 =  y i 2 –  2 2  x i 2 n – 2  (x i y i ) 2 =  y i 2 –  x i 2

13 Koefisien Determinasi TSS RSS ESS TSS = RSS + ESS ESS RSS 1 = + TSS TSS  (Ŷ i - Y) 2   i 2 = +  (Y i - Y) 2  (Y i - Y) 2 ESS  (Ŷ i - Y) 2 r 2 = = TSS  (Y i - Y) 2 atau ESS   i 2 = 1 – = 1 – TSS  (Y i - Y) 2 X Y Y  1 +  2 X i Atau:  x i 2 r 2 =  2 2  y i 2  (x i y i ) 2 =  x i 2  y i 2


Download ppt "William J. Stevenson Operations Management 8 th edition REGRESI Rosihan Asmara"

Presentasi serupa


Iklan oleh Google