Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

REGRESI LINIER BERGANDA. Tujuan Pengajaran: Setelah mempelajari bab ini, anda diharapkan dapat Mengetahui kegunaan dan spesifikasi model Menjelaskan hubungan.

Presentasi serupa


Presentasi berjudul: "REGRESI LINIER BERGANDA. Tujuan Pengajaran: Setelah mempelajari bab ini, anda diharapkan dapat Mengetahui kegunaan dan spesifikasi model Menjelaskan hubungan."— Transcript presentasi:

1 REGRESI LINIER BERGANDA

2 Tujuan Pengajaran: Setelah mempelajari bab ini, anda diharapkan dapat Mengetahui kegunaan dan spesifikasi model Menjelaskan hubungan antar variabel Mengaitkan data yang relevan dengan teori Mengembangkan data Menghitung nilai parameter Mengetahui arti dan fungsi parameter

3 Menentukan signifikan tidaknya variabel bebas Menentukan determinasi model Menjelaskan tahapan-tahapan regresi Membaca hasil regresi Menyebutkan asumsi-asumsi. Membedakan dengan regresi linier sederhana 68

4 Linier Berganda Jumlah X yang lebih dari satu tersebut terkenal dengan istilah Regresi Linier Berganda atau multiple linier regression.

5 Untuk memperjelas perihal terjadinya inflasi,dapat dicoba dengan menambah satu variabel penduga (X2) yaitu Kurs, yang menggambarkan nilai tukar IDR terhadap USD.

6 Model Regresi Linier Berganda Populasi: Y = A + B1X1 + B2X2 + B3X3 + ………+BnXn + e Atau Y = B0 + B1X1 + B2X2 + B3X3 + ………+BnXn + e Sampel : Y = a + b1X1 + b 2X2 + b 3X3 + ………+ b nXn+ e Atau Y = b0 + b1X1 + b 2X2 + b 3X3 + ………+ bnXn + e

7 notasi model Yale16. Populasi: Y = B B12.3X2i + B13.2X3i + e Sampel : Y = b b12.3X2i + b13.2X3i + e

8 Notasi b1.23 berarti nilai perkiraan Y kalau X2 dan X3 masing-masing sama dengan 0 (nol). Notasi b12.3 berarti besarnya pengaruh X2 terhadap Y jika X3 tetap. Notasi b13..2 berarti besarnya pengaruh X3 terhadap Y jika X2 tetap.

9 notasi model notasi model dapat pula ditulis sebagai berikut: Inflasi = b0 + b1Budep + b2 Kurs + ε (Pers.f.2)

10 Penghitungan Nilai Parameter Prinsip yang terkandung dalam OLS sendiri adalah untuk meminimalisasi perbedaan jumlah kuadrat kesalahan (sum of square) antara nilai observasi Y dengan Ỷ.

11 Secara matematis, fungsi minimalisasi sum of square ditunjukkan dalam rumus:

12 Untuk mendapatkan estimasi least square b 0, b 1,b 2 minimum, dapat dilakukan melalui cara turunan parsial (partially differentiate) dari formula di atas, sebagai berikut:

13

14 Jadikan nilai-nilai turunan parsial di atas menjadi sama dengan 0 (nol), dengan cara membagi dengan angka 2, hingga menjadi:

15

16

17 Untuk menyederhanakan rumus paling atas dilakukan pembagian dengan n, sehingga memperoleh rumus baru sebagai berikut:

18

19

20 mengontrol pengaruh linier X2 ketika melakukan pengukuran dampak dari perubahan X1 terhadap Y, maka dapat melakukan langkah-langkah sebagai berikut:

21

22 Tahap kedua: lakukan regresi X 1 terhadap X 2 X 1 = b 0 + b 2 X 2 + e 2 Dimana e 1 merupakan residual, yang besarnya: e 2 = X 1 – b 0 – b 2 X 2 = X 1 -X^

23 Tahap ketiga: lakukan regresi e1 terhadap e 2 e 1 = a + a 1 e 2 +e 3

24 Ekstensifikasi rumus

25

26 Dengan menggunakan rumus-rumus tersebut di atas, maka nilai total masing- masing komponen rumus yang dikembangkan adalah tertera sebagai berikut:

27 Berdasarkan data-data yang tertera dalam tabel di atas, maka nilai b0, b1, dan b2 dapat ditentukan, melalui pencarian menggunakan rumus-rumus sebagai berikut:

28 Rumus untuk mencari nilai b1 (pada model multiple regression) adalah:

29 Rumus untuk mencari nilai b2 (pada model multiple regression) adalah:

30 Rumus untuk mencari nilai b0 (pada model multiple regression) adalah:

31 Dengan menggunakan rumus pencarian b1 di atas, maka diketahui bahwa nilai b1 adalah:

32

33 Dengan menggunakan rumus pencarian b2 di atas, maka diketahui bahwa nilai b2 adalah:

34

35 Dengan menggunakan rumus pencarian b0 di atas, maka diketahui bahwa nilai b0 adalah:

36

37 Nilai dari parameter b1 dan b2 merupakan nilai dari suatu sampel. Nilai b1 dan b2 tergantung pada jumlah sampel yang ditarik. Penambahan atau pengurangan akan mengakibatkan perubahan rentangan nilai b.

38 Perubahan rentang nilai b1 dan b2 diukur dengan standar error. Semakin besar standar error mencerminkan nilai b sebagai penduga populasi semakin kurang representatif.

39 Sebaliknya, semakin kecil standar error maka keakuratan daya penduga nilai b terhadap populasi semakin tinggi. Perbandingan antara nilai b dan standar error ini memunculkan nilai t, yang dapat dirumuskan sebagai berikut:

40 t = b Sb dimana: b = nilai parameter Sb = standar error dari b. Jika b sama dengan 0 (b=0) atau Sb bernilai sangat besar, maka nilai t akan sama dengan atau mendekati 0 (nol).

41 Untuk dapat melakukan uji t, perlu menghitung besarnya standar error masing-masing parameter

42

43

44 Rumus-rumus di atas, dapat kita masuki dengan angka-angka yang tertera pada tabel, hanya saja belum semuanya dapat terisi. Kita masih memerlukan lagi angka untuk mengisi rumus Σe2

45 Nilai e adalah standar error yang terdapat dalam persamaan regresi. Perhatikan persamaan regresi: Y = b0 + b1X1 + b2 X2 + e atau Inflasi = b0 + b1Budep + b2 Kurs + e

46 Secara matematis, dari persamaan regresi di atas nilai e dapat diperoleh, dengan cara mengubah posisi tanda persamaan hingga menjadi: e = Y- (b0 + b1X1 + b2 X2)

47 Dengan memasukkan nilai b0, b1, b2, yang telah didapatkan, dan X1i, X2i, yang ada pada data, maka nilai total e dapat terlihat pada tabel berikut: Tabel: hal 82

48

49

50 Mencari Sb 1.

51

52

53

54 Setelah diketahui semua nilai standar error (Sb0, Sb1, Sb2) melalui penggunaan rumus-rumus di atas, maka nilai t untuk masing-masing parameter dapat diperoleh, karena nilai t merupakan hasil bagi antara b dengan Sb.

55 Mencari nilai statistik tb0:

56 Mencari nilai statistik tb 1 :

57 Mencari nilai statistik tb 2 :

58 Dengan menggunakan rumus-rumus di atas, maka nilai tb0 adalah:

59 dan nilai tb 1 adalah:

60 sedangkan nilai tb 2 adalah:

61 T tabel : 1,729 (uji satu arah) : 2,093 (uji dua arah) α = 5% = 0,05 α/2 = 0,25% = 0,05 N = 22 Df = n – 3 = 19

62 Tb1 = 7, 938 > T tabel = maka dapat dipastikan bahwa variabel budep secara individual signifikan mempengaruhi inflasi.

63 Tb1 = 1, 284 < T tabel = maka dapat dipastikan bahwa variabel Kurs secara individual tidak signifikan mempengaruhi inflasi.

64 Pengujian kedua nilai t dapat dijelaskan dalam bentuk gambar sebagai berikut:

65

66 Bantuan SPSS: Hal

67 Koefisien Determinasi (R2) Koefisien regresi yang biasa disimbolkan dengan R²

68 Koefisien determinasi pada dasarnya digunakan untuk mengkur goodness of fit dari persamaan regresi, melalui hasil pengukuran dalam bentuk prosentase yang menjelaskan determinasi variabel penjelas (X) terhadap variabel yang dijelaskan (Y).

69 rasio antara variasi yang dijelaskan Y dengan total variasi Y.

70 Rumus

71 Total variasi Y (TSS) dapat diukur menggunakan derajat deviasi dari masing-masing observasi nilai Y dari rata-ratanya. Hasil pengukuran ini kemudian dijumlahkan hingga mencakup seluruh observasi.

72 Jelasnya:

73

74 Jadi, rumus di atas dapat pula dituliskan menjadi sebagai berikut:

75 dimana: Ỷ (baca: Y cap) adalah nilai perkiraan Y atau estimasi garis regresi. Ỹ (baca: Y bar) adalah nilai Y rata-rata.

76 cap diperoleh dengan cara menghitung hasil regresi dengan memasukkan nilai parameter dan data variabel.

77 Sebagai contoh menghitung Y cap, berikut ini dihitung nilai Y cap pada observasi 1. Hasil regresi adalah: Y = -11, ,421 (X1) + 0, (X2)

78 Jika observasi nomor 1 (satu) kita hitung, dimana X1= 13,06 dan X2 = 9.433,25, maka nilai Ỷ 1 = -11, ,421 (13,06) + 0, (9.433,25) = 9,438

79 Tabel hal : 92 Dengan menggunakan angka-angka yang terdapat dalam tabel di atas, maka nilai R2 dapat ditentukan. Adapun rumus untuk mencari nilai R2 adalah sebagai berikut:

80

81 R2 = 48,243 64,160 R2 = 0,751 Nilai R2 sebesar 0,751 tersebut menunjukkan arti bahwa determinasi variabel Budep (X1) dan Kurs (X2) dalam mempengaruhi inflasi (Y) adalah sebesar 75,1%.

82 Nilai sebesar ini mengindikasikan bahwa model yang digunakan dalam menjelaskan variabel Y cukup baik, karena mencapai 75,1%. Sisanya sebesar 24,1% dijelaskan oleh variabel lain yang tidak dijelaskan dalam model.

83 Uji F Pengujian secara serentak tersebut dilakukan dengan teknik analisis of variance (ANOVA) melalui pengujian nilai F hitung yang dibandingka dengan nilai F tabel. Oleh karena itu disebut pula dengan uji F.

84 Pada prinsipnya, teknik ANOVA digunakan untuk menguji distribusi atau variansi means dalam variabel penjelas apakah secara proporsional telah signifikan menjelaskan variasi dari variabel yang dijelaskan.

85 F = variance between means / variance between group

86

87 H0 diterima atau ditolak, adalah merupakan suatu keputusan jawaban terhadap hipotesis yang terkait dengan uji F, yang biasanya dituliskan dalam kalimat sebagai berikut:

88 H0 : b1 = b2 = 0 Variabel penjelas secara serentak tidak signifikan mempengaruhi variabel yang dijelaskan. H0 : b1 ≠ b2 ≠ 0 Variabel penjelas secara serentak signifikan mempengaruhi variabel yang dijelaskan.

89 Karena uji F adalah membandingkan antara nilai F hitung dengan nilai F tabel, maka penting untuk mengetahui bagaimana mencari nilai F hitung ataupun nilai F tabel.

90 Nilai F hitung

91 Arti dari tulisan tersebut adalah: Simbol α menjelaskan tingkat signifikansi (level of significance) (apakah pada α =0,05 atau α =0,01 ataukah α =0,10, dan seterusnya). Simbol (k-1) menunjukkan degrees of freedom for numerator. Simbol (n-k) menunjukkan degrees of freedom for denominator.

92 Nilai F dari model

93 F hitung = 28,66 > T tabel = 3,52 Dengan demikian dapat disimpulkan bahwa variabel Budep dan Kurs secara serentak signifikan mempengaruhi inflasi. Dengan demikian, maka null hyphothesis ditolak.


Download ppt "REGRESI LINIER BERGANDA. Tujuan Pengajaran: Setelah mempelajari bab ini, anda diharapkan dapat Mengetahui kegunaan dan spesifikasi model Menjelaskan hubungan."

Presentasi serupa


Iklan oleh Google