Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

ANALISIS DATA BERKALA. ARTI DAN PENTINGNYA ANALISIS DATA BERKALA Data berkala adalah data yang dikumpulkan dari waktu- kewaktu untuk menggambarkan perkembangan.

Presentasi serupa


Presentasi berjudul: "ANALISIS DATA BERKALA. ARTI DAN PENTINGNYA ANALISIS DATA BERKALA Data berkala adalah data yang dikumpulkan dari waktu- kewaktu untuk menggambarkan perkembangan."— Transcript presentasi:

1 ANALISIS DATA BERKALA

2 ARTI DAN PENTINGNYA ANALISIS DATA BERKALA Data berkala adalah data yang dikumpulkan dari waktu- kewaktu untuk menggambarkan perkembangan suatu kegiatan. Analisis data berkala memungkinkan kita untuk mengetahui perkembangan suatu atau beberapa kejadian serta hubungan / pengaruhnya terhadap kejadian lainnya. Dengan data berkala kita juga dapat membuat ramalan- ramalan berdasarkan garis regresi atau garis trend.

3 Oleh karena data berkala itu terdiri dari beberapa komponen, maka dengan analisis data berkala kita bisa mengetahui masing-masing komponen, bahkan dapat menghilangkan satu atau beberapa komponen kalau kita ingin menyelidi komponen terssebut secara mendalam tanpa kehadiran komponen lain. Data berkala, karena adanya pengaruh dari komponen- komponen tersebut, selalu mengalami perubahan sehingga apabila dibuat grafiknya akan menunjukkan suatu fluktuasi, yaitu gerakan naik-turun.

4 BulanJanPebMaretAprilMeiJuniJuliAgustSeptOktNopDes Tahun ,82151,35146,87147,06147,05145,55147,48147,40146,76147,62150,15152, ,94163,13166,19170,30183,53190,48201,70213,72208,60211,07209,73201, ,72215,89213,32212,01208,98212,07206,84203,81203,29202,99202,27203, ,22188,88168,75190,12243,62244,02244,42245,20245,42246,95248,82254, ,46255,71253,47251,40251,43 250,53250,45255,72264,12268,62- Tabel 9.1

5

6 KLASIFIKASI GERAKAN/ VARIASI/ DATA BERKALA Gerakan / variasi data berkala terdiri dari empat komponen sebagai berikut : 1.Gerakan trend jangka panjang. 2.Gerakan / variasi siklis. 3.Gerakan / variasi musiman. 4.Gerakan / variasi yang tidak teratur.

7 Analisa data berkala pada umumnya terdiri dari uraian secara matematis tentang komponen-komponen yang menyebabkan gerakan-gerakan atau variasi-variasi yang tercermin dalam fluktuasi. Apabila gerakan trend, siklis, musiman, dan acak masing- masing diberi simbol T, C, S, dan I, maka data berkala Y merupakan hasil kali dari 4 komponen tersebut, yaitu : Y = T x C x S x I Ada juga ahli statistik yang menganggap bahwa data berkala merupakan hasil penjumlahan dari 4 komponen tersebut, yaitu : Y = T+ C + S + I

8

9

10 MENENTUKAN TREND Terdapat beberapa metode yang umum digunakan untuk menggambarkan garis trend. Beberapa di antaranya adalah metode tangan bebas, metode rata-rata semi, metode rata-rata bergerak, dan metode kuadrat terkecil.

11 Metode Tangan Bebas Langkah-langkah untuk menentukan garis trend dengan menggunakan metode tangan bebas adalah sebagai berikut : 1.Buat sumbu tegak Y dan sumbu mendatar X 2.Buat scatter diagram, yaitu kumpulan titik-titik koordinat (X, Y); X = variabel waktu. 3.Dengan jalan observasi atau pengamatan langsung terhadap bentuk scatter diagram tariklah garis yang mewakili atau paling tidak mendekati semua titik koordinat yang membentuk diagram pencar tersebut.

12 Cara menarik garis trend dengan tangan bebas merupakan cara yang paling mudah, tetapi sifatnya sangat suyektif, maksudnya kalau ada lebih dari satu orang diminta untuk menarik garis trend dengan cara ini akan diperoleh garis trend lebih dari satu. Sebab masing-masing orang mempunyai pilihan sendiri sesuai dengan anggapannya, garis mana yang mewakili diagram pencar tersebut

13

14 Tahun T PDB (Y) , , , , , , , ,1 Tabel 9.2

15

16 Y = a + bX Tahun 1992  X = 0; Y = ,9 Tahun 1999  X = 7; Y = , ,9 = a + b (0) a = , ,1 = a + b (7) ,1 = ,9 + 7b 7b = , ,9 = 4.685,2 b = 4.685,2/7 = 669,3 Y = , ,3 X

17 Metode Rata-rata Semi Cara dengan metode rata-rata semi ini memerlukan langkah- langkah sebagai berikut : 1. Data dikelompokkan menjadi dua, masing-masing kelompok harus mempunyai jumlah data yang sama. Kalau ada 10 data masing-masing 5, 6 data dikelompokkan menjadi dua dengan jumlah masing-masing 3(kalau datanya ganjil, hilangkan satu, yaitu yang ditengah), 9 data masing- masing 4, 7 data dikelompokkan menjadi dua dengan jumlah masing-masing 3, dan lain sebagainya.

18 2.Masing-masing kelompok dicari rata-ratanya. 3.Titik absis harus dipilih dari variabel X yang berada di tengah masing-masing kelompok( tahun atau waktu yang ditengah). X 1 X 2 X 3 X 4 X 5 X X 1 X 2 X 3 X 4 X 5 X 6 X Titik koordinatnya dimasukkan ke dalam persamaan Y = a + bX, untuk menghitung a dan b; dipergunakan sebagai nilai Y.

19 TahunXYRata-rata , , , , , , , ,1 Tabel 9.3

20 (1,5) ; (11.428,5) dan (5,5) ; (13.846,2) Y = a + bX ,5 = a + b (1,5)……(1)  a = ,5 – 1,5b ,2 = a + b (5,5) ……(2) ,2 = ,5 – 1,5b + 5,5b = ,5 + 4b 4b = 2.417,7 b = 604,42 a = ,5 – 1,5 (604,42) = ,87 Y = , ,42 X

21 Metode Rata-rata Bergerak Kalau kita mempunyai data berkala sebanyak n, maka rata-rata bergerak n waktu (tahun, bulan, minggu, hari) merupakan urutan rata-rata hitung. Setiap rata-rata hitung disebut total bergerak, yang berguna untuk mengurangi variasi dari data asli. Didalam data berkala, rata-rata berbegerak sering dipergunakan untuk memuluskan fluktuasi yang terjadi dalam data tersebut.

22 Dengan menggunakan rata-rata bergerak untuk mencari trend, maka kehilangan beberapa data dibandingkan dengan data asli. Artinya, banyaknya rata-rata bergerak menjadi tidak sama dengan banyaknya data asli. Pada umumnya, jumlah data asli berkurang sebanyak (n – 1); n = derajat rata-rata bergerak, yaitu banyaknya data untuk menghitung rata-rata bergerak.

23 TahunYRata-rata bergerak 4 tahun Rata-rata bergerak 5 tahun (1)(2)(3)(4) , , , , , , , , , , ,8 Peraga 9.5

24

25 Metode Kuadrat Terkecil Seperti kita ketahui bahwa garis trend linear dapat ditulis sebagai persamaan garis lurus : Y’ = a + bX Jadi mencari garis trend berarti mencari nilai a dan b. Apabila a dan b sudah diketahui, maka garis trend tersebut dapat dipergunakan untuk meramalkan Y.

26 Untuk mencari persamaan trend garis lurus dengan metode kuadrat terkecil dapat dilakukan dengan beberapa cara. Di sini akan diberikan dua cara. Cara Pertama : Pada cara pertama ini, untuk mengadakan perhitungan diperlukan nilai tertentu pada variabel waktu (X) sedemikian rupa, sehingga jumlah nilai variabel waktu adalah nol (  X i = 0) Cara Kedua : Menentukan periode awal pada variabel waktu X = 1, jadi tidak perlu membuat  X i = 0.

27 Untuk n = 3, maka X 1 X 2 X Untuk n = 4, maka X 1 X 2 X 3 X Untuk n ganjil  X k+1 = 0 n = 3  X k+1 = X 1+1 = X 2 = 0

28 Untuk n genap  X 2,5 = 0

29

30 (9.4) (9.5) (9.6)

31 TahunXYXYX2X , , , , , , , , , , , , , , ,749 Tabel 9.6 Contoh 9.4 :

32 Y = , ,94 X

33 TahunXYXYX2X , , , , ,9-38, , , ,777, ,7125, ,1164, , Jumlah Rata-rata 0000 Tabel 9.7 Contoh 9.5 :

34 Y = 39,9 – 0,77 X

35 X = 1  39,9 – 0,77(1) = 39,13 X = 2  39,9 – 0,77(2) = 38,36

36 Cara Kedua : Menentukan periode awal pada variabel waktu X = 1, jadi tidak perlu membuat  Xi = 0.

37 TahunXYXYX2X , , , , , , , , , , , , , , ,864 Jumlah , ,1204 Tabel 9.8

38 Y = 9.811, ,88 X


Download ppt "ANALISIS DATA BERKALA. ARTI DAN PENTINGNYA ANALISIS DATA BERKALA Data berkala adalah data yang dikumpulkan dari waktu- kewaktu untuk menggambarkan perkembangan."

Presentasi serupa


Iklan oleh Google