Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 CELL MEMBRANE, CHANNELS AND TRANSPORTER. 2 LO Memahami membran sel permeabilitas sel Imemahami lingkungan intrasel  MEMBRAN : membatasi lingk intrasel.

Presentasi serupa


Presentasi berjudul: "1 CELL MEMBRANE, CHANNELS AND TRANSPORTER. 2 LO Memahami membran sel permeabilitas sel Imemahami lingkungan intrasel  MEMBRAN : membatasi lingk intrasel."— Transcript presentasi:

1 1 CELL MEMBRANE, CHANNELS AND TRANSPORTER

2 2 LO Memahami membran sel permeabilitas sel Imemahami lingkungan intrasel  MEMBRAN : membatasi lingk intrasel dg ekstrasel terdiri atas : LIPID dan PROTEIN,KH MEMBRAN SEL

3 3 * Tebal : 7,5 – 10 nm * 3 garis paralel - Electron dense layer : 2 garis tebal, hitam lapisan padat electron : 2,5 – 3 nm - Electron-lucent layer : 1 lapisan diantaranya jernih : 3,5– 4 nm MEMBRAN SEL

4 4 1. Lipid (40%) : - Phospholipid : * * Phosphatidylcholine (lecithin) * * Phosphatidylethanolamine (cephalin) - Sphingomyelin - Sphingomyelin - Cholesterol - Cholesterol 2. Proteins (55%) : a. Integral proteins  usually they are insoluble in water solutions, are associated with lipids, in water solutions, are associated with lipids, this proteins may be attached to this proteins may be attached to oligosaccharides  forming glycoproteins b. Peripheral proteins  are soluble in aqueous b. Peripheral proteins  are soluble in aqueous solutions, and are usually free of lipids solutions, and are usually free of lipids 3. Carbohydrates (5%) → oligosaccharide : - glycoproteins - glycolipids - glycolipids - glycocalyx - glycocalyx Komposisi membran sel

5 5 Gambaran struktur membran sel

6 6

7 7 Struktur membran Molekul protein – lemak penyusun membran

8 8 Molekul fosfolipid pada Membran  Gambaran molekul fofsfolipid yang merupakan komponen penting dari membran sel dan menentukan bentuk membran sel

9 9 Struktur fosfolipid

10 10 1. Protein integral ; menembus dan tertanam dlm 2. lapisan ganda, terikat pd bagian ekor nonpolar a. Protein transmembran; membentuk saluran (pori-pori) → transport zat yg melewati membran b. peranannya: ● Berikatan dng karbohidrat dpt membentuk sisi reseptor untuk menerima pesan kimia dr sel lain : kelenjar endokrin ● Sebagai pemberi tanda, atau antigen, yg menjadi identitas jenis sel Protein

11 11 2. Protein perifer : terikat pada permukaan membran, dapat dng mudah terlepas dr membran. Fungsi : - Protein ini mungkin terlibat dlm struktur pendukung dan perubahan bentuk membran saat pembelahan atau pergerakan sel

12 12  Karbohidrat juga berkaitan dng molekul lipid dan protein. dalam bentuk: * Glikolipid dan glikoprotein → mrpk sisi pengenal permukaan untuk interaksi antar sel mempertahankan sel-sel darah merah : - agar tetap terpisah - atau memungkinkan penggabungan sel-sel yg sama untuk membentuk sebuah jaringan. Karbohidrat

13 13 1. Protective function : The cell membrane protects the cytoplasm and the organelles of the cytoplasm. 2. As a semipermeable membrane : The cell membrane permits only some selective substances to pass through it and acts as a barrier for other substances. 3. Absorptive function : The nutrients are absorbed into the cell through the cell membrane. Fungsi membran sel:

14 14 4. Excretory function : The metabolites and other waste products from the cell are excreted out through the cell membrane. 5. Exchange of gases : Oxygen enters the cell from the blood and carbon dioxide leaves the cell and enters the blood trough the cell membrane. 6. Maintenance of shape and size of the cell : The cell membrane is responsible for the maintenance of shape and size of the cell.

15 15

16 16 Sitoskeleton membran Cytoskeletal network

17 17 Type of transport

18 18 Transpor melalui membran sel

19 19  Prinsip dasar : * TRANSPORT PASIF * TRANSPORT AKTIF * Mekanisme transport pasif : ● difusi bebas ● osmosis ● difusi terfasilitasi ● filtrasi * Mekanisme transport aktif : - memerlukan energi, - enzim Pergerakan materi menembus membran sel

20 20  1. Transport aktif diperantarai carrier Carrier : protein integral yg disebut pompa → pompa ion natrium/kalium yg aktif dlm sel hidup. → Pompa kalsium : - kontraksi otot  2. Transport massa berukuran besar : vesikel (vakuola) → * Fagositosis * Pinositosis * Endositosis * Eksositosis Mekanisme transport aktif

21 21  Transport molekul-molekul berbeda melewati membran memperlihatkan spesifitas tinggi  Permeabilitas molekul berkaitan dengan susuna kimianya.  Macam selektifitas ini berkaitan dengan transport protein → carrier / pembawa  Ada 2 hipotesis : 1. mekanisme carrier 2. mekanisme poros tetap Transport protein, mekanisme pembawa, dan poros tetap

22 22  Mekanisme Carrier  Mekanisme poros tetap

23 23  Water*  Gases - CO2 - N2 - O2  Small uncharged polar molecules - ethanol - urea*  Hydrophobic molecules - steroid hormones Difusi

24 24  Ions - K+, Na+, Mg2+, Ca2+, Cl-, HCO3-, HPO42-  Large uncharged polar molecules - glucose  Charged polar molecules - amino acids - ATP Must be transported !

25 25 Hypothetical diagram of simple diffusion through the cell membrane. A = Diffusion through lipid layer. B = Diffusion through ungated channel. C - Diffusion through gated channel.

26 26 selectively permeable to small molecules. melalui phospholipid bilayer, membran plasma membentuk barrier yang menghalangi pertukaran molekul antarastiplasma dg lingk eksternal sel Specific transport proteins (carrier proteins and channel proteins) then mediate the selective passage of small molecules across the membrane, allowing the cell to control the composition of its cytoplasm. Transport of Small Molecules

27 27 Mobility of phospholipids in a membrane Individual phospholipids can rotate and move laterally within a bilayer.

28 28 Permeability of phospholipid bilayers Small uncharged molecules can diffuse freely through a phospholipid bilayer. However, the bilayer is impermeable to larger polar molecules (such as glucose and amino acids) and to ions.

29 29 Permeability of phospholipid bilayers : Gases, hydrophobic molecules, and small polar can diffuse through phospholipid bilayers. Larger polar molecules and charged molecules cannot

30 30 Hypothetical diagram of facilitated diffusion from higher concentration (ECF) to lower concentration (ICF). through the cell membrane. Stage 1. Glucose binds with carrier protein. Stage 2. Conformational change occurs in the carrier protein and glucose is released into ICF.

31 31 8  Conduct ions 10 ions/sec  Recognize & select specific ions  Open and close in response to specific signals Ion channels

32 32 Channel and carrier proteins (A) Channel proteins form open pores through which molecules of the appropriate size (e.g., ions) can cross the membrane. (B) Carrier proteins selectively bind the small molecule to be transported and then undergo a conformational change to release the molecule on the other side of the membrane.

33 33 Model of active transport Energy derived from the hydrolysis of ATP is used to transport H+ against the electrochemical gradient (from low to high H+ concentration). Binding of H+ is accompanied by phosphorylation of the carrier protein, which induces a conformational change that drives H+ transport against the electrochemical gradient. Release of H+ and hydrolysis of the bound phosphate group then restore the carrier to its original conformation.

34  Uniporter -  The facilitated diffusion of glucose is an example of uniport, the transport of only a single molecule.  Symporter -  The coordinate uptake of glucose and Na+ is an example of symport, the transport of two molecules in the same direction.  Antiporter -  Active transport can also take place by antiport, in which two molecules are transported in opposite directions.

35 35 Opening of the gate allows ions to flow rapidly through the channel. The channel contains a narrow pore that restricts passage to ions of the appropriate size and charge. In the closed conformation, the flow of ions is blocked by a gate. Model of an ion channel

36 36  The glucose transporter alternates between two conformations in which a glucose-binding site is alternately exposed on the outside and the inside of the cell.  In the first conformation shown (A), glucose binds to a site exposed on the outside of the plasma membrane.  The transporter then undergoes a conformational change such that the glucose-binding site faces the inside of the cell and glucose is released into the cytosol (B).  The transporter then returns to its original conformation (C). Examples of uniport : Model for the facilitated diffusion of glucose

37 37  The glucose transporter alternates between two conformations in which a glucose-binding site is alternately exposed on the outside and the inside of the cell.  In the first conformation shown (A), glucose binds to a site exposed on the outside of the plasma membrane.  The transporter then undergoes a conformational change such that the glucose-binding site faces the inside of the cell and glucose is released into the cytosol (B).  The transporter then returns to its original conformation (C). Examples of symport :  Glucose transport by intestinal epithelial cells

38 38  Ca2+ and H+ are exported from cells by antiporters, which couple to their export to the energetically favorable import of Na+. Examples of antiport

39 39  Membrane Structure  Membrane models have evolved to fit new data: science as a prosses  A membrane is a fluid mosaic of lipids, protein, and carbohydrates  Osmosis in the passive transport of water  Cell survival depends on balancing water uptake and loss  Specific protein facilitate the passive transport of selective solutes Summary

40 40  Traffic Across Membranes  Active transport is the pumping of solute against their gradiens  Some of ion pumps generate voltage across membranes  In cotransport, a membrane protein couples the transport of one solute to another  Exocytosis and endocytosis transport large molecules Summary

41 41 NOTES:

42 42 ■ The cell membrane is mainly composed of lipids and proteins. ■ Its frame work consists of a double layer of phospholipids. ■ There are two major types of proteins : tightly coiled, rod –shaped, fibrous proteins and the more compact, globular – shaped integral proteins and peripheral proteins. Overview

43 These are the different types of molecules of the cell membrane. Glycoprotein Pore protein Channel protein Phospholipid Fibrous protein H2O Molecule GlycoproteinPore proteinChannel protein Na+ These are the different types of molecules of the cell membrane. Examples of globular – shaped proteins

44 ■ Two layer of phospholipids molecules self – assemble so that their water soluble (hydrophilic) heads form the surface and interior of the membrane, and the water insoluble (hydrophobic) tails face each other. Hydrophilic heads Hydrophobic tails

45 ■ The fibrous proteins may span the entire membrane and serve as receptors for the cell

46 ■ One type of globular protein form “pores” to allow lipid insoluble water molecules to pass through. H2O Molecule

47 ■ Other integral proteins serve as channel proteins and selectively transport ions for the cell. H2O MoleculeNa+

48 ■ Globular proteins, which are peripheral (associated with the surface of the cell), may be enzymes or glycoproteins (proteins with carbohydrate associations that identify the cell. H2O Molecule Na+

49 ■ Cholesterol molecules are embedded in animal cell. Membranes but not in plant cell membranes, they help make the membrane (along with the phospholipids) impermeable to water- soluble substances. Cholesterol also stabilized themembrane. H2O Molecule Na+

50 50 ● ENDOCYTOSIS ● EXOCYTOSIS ● FILTRATION ● OSMOSIS SPECIAL CATEGORIES OF TRANSPORT

51 51

52 52

53 53

54 54 Osmosis is the movement of water from a concentrated solution to a dilute solution through a cell membrane.

55 55 Permeable is having pores or openings that permit liquids or gases to pass through, or that something is capable of being permeated. Permeable

56 56  A vacuole is found in both plant and animal cells, but in the plant cells there are fewer of them yet they are larger and in the animal cells the are small. They have fluid filled sacs and store food, water and waste (plants need to store large amounts of food). Vacuoles have membrane-bound sacs for storage, digestion and waste removal. They also contain water solutions. Vacuole

57 57 TERIMAKASIH


Download ppt "1 CELL MEMBRANE, CHANNELS AND TRANSPORTER. 2 LO Memahami membran sel permeabilitas sel Imemahami lingkungan intrasel  MEMBRAN : membatasi lingk intrasel."

Presentasi serupa


Iklan oleh Google