EVIDENCE BASED PRACTICE

Slides:



Advertisements
Presentasi serupa
The role of statistics.
Advertisements

MPS 2 Kamis, 14 Oktober  Univariat Analysis: the examination of the distribution of cases on only one variable at a time.  Distribusi frekuensi:
Evidence Based Medicine
Validitas & Reliabilitas
Game Theory Purdianta, ST., MT..
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
Validitas & Reliabilitas
Perancangan Database Pertemuan 07 s.d 08
ANALISIS INSTRUMEN PENELITIAN 1.UJI VALIDITAS 2.UJI RELIABILITAS.
BLACK BOX TESTING.
Lesson Designing and Conducting Agricultural Research.
Research Design (Cont). Jenis Perancangan Riset Jenis perancangan mana yg akan digunakan ? Peneliti perlu memikirkan tentang apa yang mereka inginkan.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
Pertemuan 05 Sebaran Peubah Acak Diskrit
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan Ketujuh Measurement Basic Matakuliah: MN J0412/ Riset Pemasaran Tahun: 2007 Versi:
Population and sample. Population is complete actual/theoretical collection of numerical values (scores) that are of interest to the researcher. Simbol.
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 21 Function Matakuliah: M0086/Analisis dan Perancangan Sistem Informasi Tahun: 2005 Versi: 5.
1 Pertemuan 22 Analisis Studi Kasus 2 Matakuliah: H0204/ Rekayasa Sistem Komputer Tahun: 2005 Versi: v0 / Revisi 1.
Chapter 6 Using Questionnaires
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Diabetic Neuropathies: The Nerve Damage of Diabetes.
PROBABILITY DISTRIBUTION
DISTRIBUSI BINOMIAL.
Memahami Terminology Instrumentasi pada pengolahan migas
RISET AKADEMIK: ORISINALITAS RISET DAN PEMODELAN
VERIFIKASI ALAT UKUR SMK Negeri 13 Bandung.
Teori VALIDITAS.
Cartesian coordinates in two dimensions
VARIABEL Metode Penelitian Psikologi 1
Cartesian coordinates in two dimensions
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Regresi.
DISTRIBUSI BINOMIAL.
TES DAN PENGUKURAN.
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
PROBLEM (pengukuran atribut psikologis).
VECTOR VECTOR IN PLANE.
the formula for the standard deviation:
Dr Rilla Gantino, SE., AK., MM
Evidance Based Practice
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
STATISTICS FOR ENVIROMENTAL STUDIES FARIKHIN DEPARTEMEN MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERISTAS DIPONEGORO.
CENTRAL TENDENCY Hartanto, SIP, MA Ilmu Hubungan Internasional
Eksperimen Satu Faktor: (Disain RAL)
Master data Management
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
SAVE-IT SAfety VEhicles using adaptive Interface Technology Phase 1 Research Program Quarterly Program Review Task 6: Telematics Task Leaders: Paul Green.
ENGINEERING SCIENCE IS ABOUT SOLVING PROBLEMS
Evidence-Based Medicine Prof. Carl Heneghan Director CEBM University of Oxford.
EVALUATING SELECTION TECHNIQUES & DECISIONS
ENGINEERING RESEARCH IS A QUANTITATIVE RESEARCH
BY: MIYA ILYAH AZMALAH RISKI INTAN PRATITIS AQIDATUL MUJADDIDAH EXPERIMENTAL RESEARCH.
Copyright©2010 Companyname Free template by Investintech PDF SolutionsInvestintech PDF Solutions Placenta previa is placenta implantation on the uterine.
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

EVIDENCE BASED PRACTICE

Pendahuluan EBP Merupakan intergrasi dari penelitian-penelitian terbaik, keahlian klinis, pengalaman dan penilaian-penilaian yang diperoleh dari pasien atau klien. Penelitian terbaik : Penelitian yang akurat dan relevan dengan fokus pada masalah klinis. Penilaian Pasien : Pertimbangan berdasarkan bukti juga perlu penilaian dari pasien/klien

CRITICAL APRAISAL Penilaian Kritis Penilaian secara kritis,slektif dan detail penilaian terhadap sesuatu untuk menganalisis dan mengevaluasi. Alat bantu untuk memeriksa setiap proses untuk memikirkan apakah proses itu memang tepat dan apakah data alternatif yang lebih baik.

LANGKAH-LANGKAH CRITICAL APPRAISAL Menyiapkan sesi analisis kritis Mengidentifikasi proses yang perlu diperbaiki

MANFAAT CRITICAL APPRAISAL Meningkatkan daya analisis kritis Menentukan alternatif yang lebih baik Memunculkan banyak pertanyaan yang baru Informasi yang diproleh lebih detail dan lebih paham Memperoleh kebenaran dari suatu informasi

TUJUAN CRITICAL APPRAISAL Berhubungan dengan tujuan kegiatan yang di periksa serta tempatnya tahapanya dan sebagainya ada beberapa pertanyaan yang harus dipikirkan dan dijawab.

DAMPAK POSITIF Tidak mudah terpengaruh Tidak membedakan baik dengan yang salah Dapat mengambil keputusan yang akurat

DAMPAK NEGATIF Terlalu lama menkaji dan memutuskan suatu informasi

TUJUAN EBP untuk mengembangakn kemampuan berpikir kritis menghasilkan pemikiran yang akurat pemeriksaannya secara teliti agar diagnosisnya tepat untuk memperoleh penyembuhan penyakit

FAKTOR-FAKTOR YANG MEMPENGARUHI EBP Bukti penelitian yang baik Keahlian klinis seorang Fisioterapis Keadaan dan harapan seorang pasien

RCT Suatu proses untuk menentukan dan menliai efektifitas dari suatu obat yang dilakukan dengan cara acak dari percobaan tersebut

LANGKAH-LANGKAH RCT inform concent (persetujuan setelah mendapatkan penjelasan) etical clearens penelitian Tentukan luas populasi penelitian yang akan dilakukan Tentukan sifat atau kualitas populasi Tentukan sumber informasi tentang populasi Tentukan batasan sampel serta karakteristik yang ingin diteliti yang terdapat didalam sampel Tentukan besarnya sample dengan rumus-rumus yang sesuai Tentukan teknik sampling yang sesuai

RCT dibagi menjadi 3 Single blind yaitu yang di uji tidak tahu Double blind yaitu yang di uji dan pelaksana yang tidak tahu Triple blind yaitu yang di uji,pelaksana dan juga peneliti yang tidak tahu

Experimental Research Example Randomized Clinical or Controlled Trial (RCT): In general, a clinical treatment, or experimental condition, is compared to a control condition, often a placebo but in some cases an alternative treatment, where subjects are randomly assigned to a group. (Portney and Watkins, 2000)

Experimental Research, continued… Examples: Single-Subject Design: Variation of RCT, study of an individual over time with repeated measurement and determined design phases (Portney and Watkins, 2000) In an N=1 RCT, a single individual receives alternating treatment and placebo or alternative treatment, with the patient and the assessor blinded to intervention allocation. Objective or subjective measures are then recorded during the allocation periods. (Guyatt and Rennie, 2002)

Experimental Research, continued… Examples: Sequential Clinical Trial: Variation of RCT, technique that allows for the continuous analysis of data as it becomes available, does not require a fixed sample Quasi-Experimental Research: Comparative research in which subjects cannot be randomly assigned to a group, or control groups cannot be used. Lower level of evidence than RCTs. (Portney and Watkins 2000)

Experimental Research, continued Examples: Systematic Review: Combination of several studies with the same or similar variables, in which the studies are summarized and analyzed (Guyatt and Rennie, 2002) Meta-analysis: Statistical combination of the data from several studies with the same or similar variables, to determine an overall outcome (Portney and Watkins, 2000; Guyatt and Rennie, 2002)

Hierarchy of Evidence for Treatment Decisions: Greatest (Top) to Least (Bottom) N of 1 randomized controlled trial Systematic review of randomized trials* Single randomized trial Systematic review of observational studies addressing patient-important outcomes Single observational study addressing patient-important outcomes Physiological studies (studies of blood pressure, cardiac output, exercise capacity, bone density, and so forth) Unsystematic clinical observations *A meta-analysis is often considered higher than a systematic review (Guyatt and Rennie, 2002)  

Hierarchy of Evidence Ideally, evidence from individual studies would be compiled or synthesized into systematic reviews, with that information succinctly consolidated into easily and quickly read synopses. All relevant information would be integrated and linked to a specific patient’s circumstance. The medical search literature is still far from this, but working towards that goal. Efforts include clinical prediction guidelines and APTA’s emphasis on EBP.     (Straus et al, 2005)

Variables Variables: Characteristic that can be manipulated or observed Types of Variables Independent or Dependent Measurement Scales/Levels Classification is useful for communication, so that readers are aware of the author’s hypothesis of what situation or intervention (independent variable) will predict or cause a given outcome (dependent variable) (Portney and Watkins, 2000)

Variables: Independent or Dependent Independent Variable: A variable that is manipulated or controlled by the researcher, presumed to cause or determine another (dependent) variable Dependent Variable: A response variable that is assumed to depend on or be caused by another (independent) variable (Portney and Watkins, 2000)

Variables: Measurement Scales Useful to convey information to the reader about the type of variables observed Necessary to determine what statistical analysis approach should be used to examine relationships between variables From lowest to highest level of measurement, the scales are nominal, ordinal, interval, and ratio (Portney and Watkins, 2000)

Variables: Measurement Scales Nominal Scales (Classification Scale) Data, with no quantitative value, are organized into categories Categorizes are based on some criterion Categories are mutually exclusive and exhaustive (each piece of data will be assigned to only one category) Only permissible mathematical operation is counting (such as the number of items within each category) Examples: Gender, Blood Type, Side of Hemiplegic Involvement (Portney and Watkins, 2000)

Variables: Measurement Scales Ordinal Scales Data are organized into categories, which are rank-ordered on the basis of a defined characteristic or property Categories exhibit a “greater than-less than” relationship with each other and intervals between categories may not be consistent and may not be known (Portney and Watkins, 2000)

Variables: Measurement Scales Ordinal Scales, continued If categories are labeled with a numerical value, the number does not represent a quantity, but only a relative position within a distribution (for example, manual muscle test grades of 0-5) Not appropriate to use arithmetic operations Examples: Pain Scales, Reported Sensation, Military Rank, Amount of Assistance Required (Independent, Minimal…) (Portney and Watkins, 2000)

Variables: Measurement Scales Interval Scales Data are organized into categories, which are rank-ordered with known and equal intervals between units of measurement Not related to a true zero Data can be added or subtracted, but actual quantities and ratios cannot be interpreted, due to lack of a true zero Examples: Intelligence testing scores, temperature in degrees centigrade or Fahrenheit, calendar years in AD or BC (Portney and Watkins, 2000)

Variables: Measurement Scales Ratio Scales Interval score with an absolute zero point (so negative numbers are not possible) All mathematical and statistical operations are permissible Examples: time, distance, age, weight (Portney and Watkins, 2000)

Variables: Clinical Example A study investigates how a strengthening program impacts a child’s ability to independently walk. In this case, the strengthening program is the independent variable and the ability to independently walk is the dependent variable. Amount of assistance required (if ranked maximal, moderate, minimal, independently, not based on weight put on a crutch or other quantitative testing) would be an example of ordinal data.   Studies often have more than one independent or dependent variable

Measurement Validity Measurement Validity examines the “extent to which an instrument measures what it is intended to measure” (Portney and Watkins, 2000) For example, how accurate is a test or instrument at discriminating, evaluating, or predicting certain items?

Measurement Validity Validity of Diagnostic Tests Based on the ability for a test to accurately determine the presence or absence of a condition Compare the test’s results to known results, such as a gold standard. For example, a test determining balance difficulties likely to result in falls could be compared against the number of falls an individual actually experiences within a certain time frame. A clinical test for a torn ACL could be compared against an MRI. (Portney and Watkins, 2000)

Measurement Validity: Types Face Validity: Examines if an instrument appears to measure what it is supposed to measure (weakest form of measurement validity) Content Validity: Examines if the items within an instrument adequately comprise the entire content of a given domain reported to be measured by the instrument Construct Validity: Examines if an instrument can measure an abstract concept (Portney and Watkins, 2000)

Measurement Validity: Types Criterion-related Validity: Examines if the outcomes of the instrument can be used as a substitute measure for an established gold standard test.  Concurrent Validity: Examination of Criterion-related Validity, when the instrument being examined and the gold standard are compared at the same time  Predictive Validity: Examination of Criterion-related Validity, when the outcome of the instrument being examined can be used to predict a future outcome determined by a gold standard (Portney and Watkins, 2000)

Measurement Validity: Statistics Ways to Evaluate Usefulness of Clinical Screening or Diagnostic Tools Sensitivity and Specificity Positive and Negative Predictive Value Positive and Negative Likelihood Ratios Receiver Operating Characteristic (ROC) Curve The above mentioned statistical procedures are often used when researchers are introducing (and validating) the test. Hopefully the values from these operations can be found tool’s testing manual or in articles evaluating the tool’s validity within certain populations or settings.