D10K-6C01 Pengolahan Citra PCD-ML Pengolahan Citra Menggunakan MATLAB

Slides:



Advertisements
Presentasi serupa
Outline Materi Hubungan antara Comp. Vision, Grafika Komputer, Pengolahan Citra, dan Pengenalan Pola (Pattern Recognition) Domain Computer Vision Processing.
Advertisements

Color Image Processing
© aSup-2007 PENGENALAN SPSS   1 INTRODUCTION to SPSS Statistical Package for Social Science.
PENGANTAR GRAFIK KOMPUTER DAN OLAH CITRA
1 Pertemuan 1 Introduction Matakuliah: sistem Operasi Tahun: 2010.
Pemrograman Berorientasi Obyek1 Sejarah C – Martin Richard -> Bahasa Pemrograman BCPL 1970 – Ken Thomson (Bell Lab) -> Bahasa B yang membuat Unix.
Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial
Tutorial Matlab Ref : Analisa Numerik Tutorial Matlab Ref :
Edge Detection (Pendeteksian Tepi)
Class and Object Introduction Specifying a Class Defining Member Function A C++ Program with Class Nesting of Member Functions Private Member Functions.
1 Pertemuan 2 Citra Dijital dan Persepsi Visual Matakuliah: T0283 – Computer Vision Tahun: 2005 Versi: Revisi 1.
1 Pertemuan 19 Function Component Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
INTRODUCTION TO SPSS Statistical Package for Social Science 1.
Fuzzy for Image Processing
Imam Cholissodin| 07 | Texture Mapping Imam Cholissodin|
1 Pertemuan 5 Deteksi Bentuk Primitif Obyek 2D Matakuliah: T0283 – Computer Vision Tahun: 2005 Versi: Revisi 1.
IMAGE ENHANCEMENT (PERBAIKAN CITRA)
Asas Photoshop CS4. Understand basic term and option in Photoshop CS4.
COMPUTER GRAPHICS D10K-5C01 GK11: OpenGL Transformasi dan Interaksi Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas.
Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial
RECEIVER TELEVISION SYSTEM MONITOR COMPUTER By Sarbini, S.Pd (SMK Muh 3 Yogyakarta)
Visual Basic for Aplications in powerpoint. What is Visual Basic for Aplications? Visual Basic for Applications (VBA) is a very powerful objectoriented.
Sistem Temu-Balik Informasi INFORMATION RETRIEVAL SYSTEMS (IRS)
Dasar Pengolahan Video Digital
EIS (Executive Information Systems)
Dasar Pengolahan Video Digital
Modul 1 PENGANTAR PENGOLAHAN CITRA
IMAGE PROCESSING Ferda Ernawan, Ph.D
Teknologi Dan Rekayasa
Image Segmentation.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Pertemuan 06 Fungsi Analisis pada SIG
Fungsi Analisis pada SIG
The contents This lectures we will look at image enhancement techniques working in the spatial domain: What is image enhancement? Different kinds of image.
BAB VIII Representasi Citra
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Color Image Processing
CAD READER PERTEMUAN 4.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Signal Processing Image Processing Audio Processing Video Processing
Introduction Mengembangkan autonomous systems yang mampu membantu manusia dalam tugas sehari-hari adalah salah satu tantangan besar dalam computer science.
Pengolahan Citra Digital
Kualitas Citra Pertemuan 1
Key Stages in Digital Image Processing
Image Enhancement –Spatial Filtering
How to connect to internet via ISP
BAB IX Recognition & Interpretation
Signal Processing Image Processing Audio Processing Video Processing
Peningkatan Mutu Citra
Sumber : Cris Salomon, “Fundamental of Digital Image Processing”
PEMROGRAMAN TERAPAN (MATLAB)
Image Segmentation.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
EIS (Executive Information Systems)
Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial
PERTEMUAN KE-1 Sumber :Prof. Sinisa Todorovic
Pengolahan Citra Digital Peningkatan Mutu/Kualitas Citra
Sistem Temu-Balik Informasi INFORMATION RETRIEVAL SYSTEMS (IRS)
TUGAS REVIEW JURNAL GRAFIKA KOMPUTER
ABSTRACT Animation is an image or object processing which can be moved. Firstly, animation is made using paper sheet by sheet which is flipped until get.
About Microsoft Power BI. Introduction  Power BI is a suite of business analytics tools that deliver insights throughout your organization. Connect to.
PENGENALAN CITRA DIGITAL
IMAGE ENHANCEMENT.
PENGOLAHAN CITRA DIGITAL : PENGENALAN POLA TEMPLATE MATCHING
Data Statistika diPYTHON
SISTEM PENUNJANG KEPUTUSAN UNTUK SISTEM INFORMASI MANAJEMEN.
Morphological processing
Pemrosesan Bukan Teks (Citra)
Transcript presentasi:

D10K-6C01 Pengolahan Citra PCD-ML Pengolahan Citra Menggunakan MATLAB Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran Semester Genap 2015-2016

MATLAB 2015a Image Processing and Computer Vision Products: Use graphical tools to visualize and manipulate images and video. Connect to hardware and develop new ideas using libraries of reference-standard algorithms. Products: MATLAB Computer Vision System Toolbox Image Acquisition Toolbox Image Processing Toolbox Parallel Computing Toolbox Signal Processing Toolbox Statistics and Machine Learning Toolbox

Images in Matlab Matlab is optimised for operating on matrices Images are matrices! Many useful built-in functions in the Matlab Image Processing Toolbox Very easy to write your own image processing functions

Loading and displaying images >> I=imread('mandrill.bmp','bmp'); % load image >> image(I) % display image >> whos I Name Size Bytes Class I 512x512x3 786432 uint8 array Grand total is 786432 elements using 786432 bytes image format as a string Matrix with image data image filename as a string Matlab can only perform arithmetic operations on data with class double! Display the left half of the mandrill image Dimensions of I (red, green and blue intensity information)

Ekstraksi Color Channel %----------membaca dan isi variabel----------------¬ gambar=imread(‘lena.jpg’); red=gambar; green=gambar; blue=gambar; %----------memproses per channel ---------------¬ red(:,:,2)=0; red(:,:,3)=0; green=(:,:,1)=0; green=(:,:,3)=0; blue(:,:,1)=0; blue(:,:,2)=0; %----------menampilkan gambar----------------¬ imshow(gambar) imshow(red) imshow(green) imshow(blue)

Konversi RGB ke Gray %------- Image Processing Toolbox ------ gambar=imread(‘lena.jpg’); gray=rgb2gray(gambar); imshow(gray); %------- Conventional ------ gray2 = 0.2989 * rgb(:,:,1) +0.5870 * rgb(:,:,2) + 0.1140 * rgb(:,:,3); imshow(gray2);

Tipe Image dalam Matlab Indexed Image Intensity Image RGB (truecolor) Image

Image Complement gambar=imread(‘lena.jpg’); invert=imcomplement(gambar); figure, imshow(invert); Invert/ complement

Histogram Citra %------- Histogram Seluruh Channel ------ gambar=imread(‘lena.jpg’); gray=rgb2gray(gambar); figure,imhist(gray); %------- Histogram Per Channel ------figure, imhist(gambar(:,:,1)); %---Red --- figure, imhist(gambar(:,:,2)); %---Green – figure, imhist(gambar(:,:,3)); %---Blue – %Bagaimana kalau imhist(gambar);??? Jelaskan !!!

Histogram Equalization %------- Histogram Citra ------ gambar=imread(‘lena.jpg’); gray=rgb2gray(gambar); figure,imshow(gray),figure,imhist(gray); %------- Histogram Equalization ------ grayeq=histeq(gray); figure,imshow(grayeq),figure,imhist(grayeq);

Image Crop % FORMAT x,y,w,h %------- Image Crop------ gambar=imread(‘lena.jpg’); crop=imcrop(gambar,[0 0 250 250]); imshow(gambar), figure, imshow(crop); % FORMAT x,y,w,h

Region of Interest (ROI) Menandari bagian yang menjadi pusat perhatian (region of interest) Bentuk area berupa polygon Format roipoly(I,c,r); I adalah matriks gambar c adalah matriks dari kolom ROI r adalah matriks dari baris ROI

Contoh Sederhana ROI gambar=imread(‘lena.jpg’); %------- ROI Segi Empat ------ c=[0 100 100 0]; r=[0 0 100 100]; ROI=roipoly(gambar,c,r); figure, imshow(ROI); %------- ROI Poligon------ c=[0 100 150 100 0]; r=[0 0 50 100 100]; %------- Menggunakan fungsi roifill----- g=gambar(:,:,1); ROI=roifill(g,c,r);

Region-based Processing Define and operate on regions of interest (ROI) Basic Functions roipoly Specify polygonal region of interest (ROI) poly2mask Convert region of interest (ROI) polygon to region mask regionfill Fill in specified regions in image using inward interpolation roicolor Select region of interest (ROI) based on color roifilt2 Filter region of interest (ROI) in image Interactive Functions imellipse Create draggable ellipse imfreehand Create draggable freehand region impoly Create draggable, resizable polygon imrect Create draggable rectangle imroi Region-of-interest (ROI) base class

Topik Lanjutan Pengolahan citra pada domain frekuensi FFT DCT Konversi ke Citra Biner Morphological Image Processing Dilasi Erosi Object counting Area Proses Konvolusi Filtering Edge Detection Image Reconstruction Proses Citra secara Live Koneksi Kamera Live histogram

Image Processing Toolbox Perform image processing, analysis, and algorithm development Image Processing Toolbox™ provides a comprehensive set of reference-standard algorithms, functions, and apps for image processing, analysis, visualization, and algorithm development. You can perform image analysis, image segmentation, image enhancement, noise reduction, geometric transformations, and image registration. Many toolbox functions support multicore processors, GPUs, and C-code generation. Image Processing Toolbox supports a diverse set of image types, including high dynamic range, gigapixel resolution, embedded ICC profile, and tomographic. Visualization functions and apps let you explore images and videos, examine a region of pixels, adjust color and contrast, create contours or histograms, and manipulate regions of interest (ROIs). The toolbox supports workflows for processing, displaying, and navigating large images.

Capabilities

Computer Vision Toolbox Design and simulate computer vision and video processing systems Computer Vision System Toolbox™ provides algorithms, functions, and apps for the design and simulation of computer vision and video processing systems. You can perform object detection and tracking, feature detection and extraction, feature matching, stereo vision, camera calibration, and motion detection tasks. The system toolbox also provides tools for video processing, including video file I/O, video display, object annotation, drawing graphics, and compositing. Algorithms are available as MATLAB® functions, System objects™, and Simulink® blocks. For rapid prototyping and embedded system design, the system toolbox supports fixed-point arithmetic and automatic C-code generation.

Computer Vision Toolbox Key Features Feature Detection, Extraction, and Matching Object Detection and Recognition Object Tracking and Motion Estimation Camera Calibration Stereo Vision Video Processing, Display, and Graphics Fixed Point and Code Generation

Key Features Object detection, including Viola-Jones and other pretrained detectors Object tracking, including Kanade-Lucas-Tomasi (KLT) and Kalman filters Feature detection, extraction, and matching, including FAST, BRISK, MSER, and HOG Camera calibration for single and stereo cameras, including automatic checkerboard detection and an app for workflow automation Stereo vision, including rectification, disparity calculation, and 3D reconstruction Support for C-code generation and fixed-point arithmetic with code generation products Video processing, object annotation, video file I/O, video display, graphic overlays, and compositing

Feature Detection and Extraction A feature is an interesting part of an image, such as a corner, blob, edge, or line. Feature extraction enables you to derive a set of feature vectors, also called descriptors, from a set of detected features. Computer Vision System Toolbox offers capabilities for feature detection and extraction that include: Corner detection, including Shi & Tomasi, Harris, and FAST methods BRISK, MSER, and SURF detection for blobs and regions Extraction of BRISK, FREAK, SURF, and simple pixel neighborhood descriptors Histogram of Oriented Gradients (HOG) feature extraction Visualization of feature location, scale, and orientation

Feature Detection and Extraction

Videos: Image Processing and Computer Vision Products Overview Image Processing Toolbox Computer Vision Toolbox Image Acquisition Toolbox Statistics and Machine Learning Toolbox Parallel Computing Toolbox