Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.

Slides:



Advertisements
Presentasi serupa
Moving Average dan Exponential Smoothing
Advertisements

MPS 2 Kamis, 14 Oktober  Univariat Analysis: the examination of the distribution of cases on only one variable at a time.  Distribusi frekuensi:
Common Effect Model.
METODE PERAMALAN KUANTITATIF
KONSEP DAN PEMODELAN ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE)
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
Pertemuan 02 Ukuran Numerik Deskriptif
Analisis Deret Waktu: Materi minggu ketiga
FACILITY DESIGN NURUL UMMI, ST MT.
BLACK BOX TESTING.
PERAMALAN Memprediksi peristiwa masa depan
Metode Peramalan (Forecasting Method)
Inventory Management. Introduction Basic definitions ? An inventory is an accumulation of a commodity that will be used to satisfy some future demand.
Forecasting.
METODE FORECASTING.
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
METODE PERAMALAN Pertemuan 15
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PENDUGAAN PARAMETER Pertemuan 7
Metode Peramalan (Forecasting Method)
PERAMALAN (FORECASTING)
1 Pertemuan 1-2 Analisis Deret Waktu Matakuliah: I0224/Analisis Deret Waktu Tahun: 2007 Versi: revisi.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 24 Deret Berkala, Peramalan, dan Angka Indeks-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
DERET BERKALA (TIME SERIES) (1)
6. Metode Exponential Smoothing (1)
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Ukuran Penyimpangan atau Disversi Pertemuan 04
METODE PENGHALUSAN EKSPONENSIAL
PERENCANAAN PERMINTAAN DALAM Supply Chain
Metode Peramalan Deret Waktu STK352 / 3(2-2)
RIZKA HADIWIYANTI, SKom,MKom
SUPPLY CHAIN MANAGEMENT (SCM)
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
PENGUKURAN STRES.
METODE-METODE PERAMALAN BISNIS
PROYEKSI BISNIS MENGGUNAKAN METODE KUANTITATIF
PERAMALAN Oleh: Sri Hermawati.
D0052 Pengantar Teknik dan Sistem Industri
MOVING AVERAGES.
Magister Management Program UNIVERSITAS KOMPUTER INDONESIA
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
METODE2 KEPUTUSAN PENGANGGARAN MODAL
METODA PERAMALAN KUANTITATIF
Peramalan Data Time Series
Exponential Smoothing
Ekonomi Manajerial dalam Perekonomian Global
Significantly Significant
Exponential Smoothing
Pendugaan Parameter (II) Pertemuan 10
PERAMALAN (FORECASTING)
Naïve Method & Total Historical Average
FORECASTING.
DERET BERKALA (TIME SERIES) (1)
Cost-Volume-Profit Analysis
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
Master data Management
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Perencanaan dan Pengendalian Produksi Minggu 2
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
PEMODELAN MATEMATIKA Kudang B. Seminar.
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Peramalan (forecasting) Perancangan Sistem Produksi Widjajani Risris Nurjaman.
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
Transcript presentasi:

Smoothing

Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing with trends and/or seasonal patterns

Simple M-Period Moving Average adalah rata-rata dari M titik data terakhir Pada dasarnya mengasumsikan data merupakan series stabil (tidak ada trend)

Moving Average hari Nilai tukar USD/IDR HariNilai Tukar F 4 = ( ) / 3 = F 4 = F 5 = ( ) / 3 = HariNilai Tukar F 4 = ( ) / 3 = F 4 = F 5 = ( ) / 3 =

Moving Average hari Nilai tukar USD/IDR Nilai aktual Moving average dengan rentang 3 hari Moving average dengan rentang 6 hari

Weighted Moving Averages W i adalah bobot dari setiap titik data historis. Pada prinsipnya, semua teknik forecasting data time series univariate merupakan weighted moving averages

Weighted Moving Average hari Nilai tukar USD/IDR Bobot yang ditentukan t0.7 t – 10.2 t – 20.1 F 4 = 0.7* * *10319 F 4 = F 5 = 0.7* * *10325 F 5 = Bobot yang ditentukan t0.7 t – 10.2 t – 20.1 F 4 = 0.7* * *10319 F 4 = F 5 = 0.7* * *10325 F 5 =

Simple Exponential Smoothing F t+1 (t) = Forecast for time t+1 made at time t A t = Actual outcome at time t 0<  <1 is the “smoothing parameter” F t+1 (t) = F t (t-1) +  [A t – F t (t-1)] –Adjust forecast based on last forecast error OR F t+1 (t) = (1-  )F t (t-1) +  A t –Weighted average of last forecast and last Actual

Exponential Smoothing Include all past observations Weight recent observations much more heavily than very old observations Bobot Sekarang Decreasing weight given to older observations   (1-  )  (1-  ) 2

Simple Exponential Smoothing Is appropriate when the underlying time series behaves like a constant + Noise –X t =  + N t –That is, for a quite stable process Not appropriate when trends or seasonality present

Simple Exponential Smoothing hari Nilai tukar USD/IDR F t+1 (t) = (1-  )F t (t-1) +  A t Initial F 3 = ( )/2 = A3 = F 4 = 0.3 (10319) (10287) = D 4 = F 5 = 0.3 (10325) ( ) = F t+1 (t) = (1-  )F t (t-1) +  A t Initial F 3 = ( )/2 = A3 = F 4 = 0.3 (10319) (10287) = D 4 = F 5 = 0.3 (10325) ( ) =

Simple Exponential Smoothing Thus, new forecast is weighted sum of old forecast and actual data Notes: –Only 2 values (A t and F t ) are required, comparedwith n for moving average –Parameter α determined empirically (whatever works best) –Rule of thumb: α < 0.5 –Typically, α = 0.2 or α = 0.3 work well Large α value emphasizes recent data levels and a forecast responsive to trends Small α value takes past demands into account and provide a more stable forecast

Single Exponential Smoothing

Double Smoothing Terdiri atas dua tahap –Melakukan smoothing terhadap series asal –Melakukan smoothing terhadap series hasil smoothing Cocok dikunakan untuk series yang memiliki pola trend naik/turun Dapat dilakukan pada moving average maupun exponential smoothing

Smoothing untuk Data yang mengandung trend dan seasonal Holt-Winter Method Memasukkan term trend (fungsi linear data terhadap waktu) serta pengaruh data pada periode ke-(t-s) sebagai cara menangkap seasonal. Bentuk model komponen: aditif atau multiplikatif

Error Measures Errors: The difference between actual and predicted (one period earlier) e t = V t – P t (t-1) –e t =can be positive or negative Absolute error |e t | –Always positive Squared Error e t 2 –Always positive The percentage error PE t = 100e t / V t –Can be positive or negative

Bias and error magnitude Forecasts can be: –Consistently too high or too low (bias) –Right on average, but with large deviations both positive and negative (error magnitude) Should monitor both for changes

Error Measures Look at errors over time Cumulative measures summed or averaged over all data –Error Total (ET) –Mean Percentage Error (MPE) –Mean Absolute Percentage Error (MAPE) –Mean Squared Error (MSE) –Root Mean Squared Error (RMSE) –Mean Absolute Deviation (MAD) Measure Bias Measure error magnitude

Error Total Sum of all errors Uses raw (positive or negative) errors ET can be positive or negative Measures bias in the forecast Should stay close to zero as we saw in last presentation Average of percent errors Can be positive or negative Measures bias, should stay close to zero MPE

MSE and RMSE Average of squared errors Always positive Measures “magnitude” of errors Units are “data units squared” Square root of MSE Always positive Measures “magnitude” of errors Units are “data units” Standard deviation of forecast errors

MAPE and MAD Average of absolute percentage errors Always positive Measures magnitude of errors Units are “percentage” Smoothed absolute errors Always positive Measures magnitude of errors Looks at the recent past

Percentage or Actual units Often errors naturally increase as the level of the series increases Natural, thus no reason for alarm If true, percentage based measured preferred Actual units are more intuitive

Pelatihan Time Series Analysis Squared or Absolute Errors Absolute errors are more intuitive Standard deviation units less so –66% within  1 S.D. –95% within  2 S.D. When using measures for automatic model selection, there are statistical reasons for preferring measures based on squared errors

Pelatihan Time Series Analysis Terima Kasih