Model Fuzzy Tsukamoto.

Slides:



Advertisements
Presentasi serupa
<Artificial intelligence>
Advertisements

Contoh Kasus Fuzzy dalam menentukan Jumlah Produksi Barang berdasarkan Jumlah Permintaan konsumen dan Jumlah Barang yang tersedia di gudang.
SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2011
Bahan Kuliah IF4058 Topik Khusus IF
Logika Fuzzy.
Sistem Inferensi Fuzzy
Logika Fuzzy.
FUZZY INFERENCE SYSTEMS
SISTEM PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PENERIMAAN BEASISWA BAGI MAHASISWA BERBASIS LOGIKA FUZZY ADE SYAYUTI MANNAF K
FUZZY INFERENCE SYSTEMS
LOGIKA FUZZY Kelompok Rhio Bagus P Ishak Yusuf
Logika Fuzzy.
LOGIKA FUZZY PERTEMUAN 3.
Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System
CONTOH PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno
FUZZY LOGIC LANJUTAN.
Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI
Kuliah Sistem Fuzzy Pertemuan 5 “Sistem Inferensi Fuzzy”
Intelligent Control System (Fuzzy Control)
Logika Fuzzy.
Kuliah Sistem Fuzzy Pertemuan 6
LOGIKA FUZZY.
KECERDASAN BUATAN LOGIKA FUZZY (Fuzzy Logic) Edy Mulyanto.
LOGIKA FUZZY (Lanjutan)
FUZZY INFERENCE SYSTEMS
FUZZY INFERENCE SYSTEMS
Model Fuzzy Mamdani.
Lin (1996), menggunakan jaringan syaraf untuk
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
KECERDASAN BUATAN (Artificial Intelligence) Materi 5
CARA KERJA SISTEM PAKAR
Logika Fuzzy.
FUZZY TSUKAMOTO UTHIE.
FUZZY INFERENCE SYSTEM (FIS) - MAMDANI
FIS – Metode SUGENO Pert- 6.
Sistem Inferensi Fuzzy
REASONING FUZZY SYSTEMS.
FUZZY INFERENCE SYSTEM (FIS)
Array Buat algoritma untuk mencari nilai terbesar dari 5 nilai mahasiswa yang diinputkan dengan array.
FUZZY INFERENCE SYSTEM (FIS)
Kode MK : TIF01405; MK : Kecerdasan Buatan
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Pertemuan 20 OPERASI PADA HIMPUNAN FUZZY
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
Fuzzy logic Fuzzy Logic Disusun oleh: Tri Nurwati.
SISTEM FUZZY.
LATIHAN 1 (kelompok 1 – 3) Permintaan terbesar 6000 kemasan/hari, permintaan terkecil 2000 kemasan/hari Persediaan barang digudang terbanyak mencapai 700.
LOGIKA FUZZY Dosen Pengampu : Dian Tri Wiyanti, S.Si, M.Cs
Oleh : Yusuf Nurrachman, ST, MMSI
Perhitungan Membership
METODE FIS Pertemuan Ke-5.
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
Penyusun: Tri Nurwati (dari segala sumber :)
Sistem Inferensi Fuzzy
Operasi Himpunan Fuzzy
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Rusmala, S.Kom., M.Kom Pertemuan 9, 10, 11
Sistem Pakar teknik elektro fti unissula
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
METODE FIS Pertemuan Ke-5.
FUZZY TSUKAMOTO UTHIE.
CCM110 Matematika Diskrit Pertemuan-11, Fuzzy Inference System
Logika Fuzzy (Fuzzy Inference System)
Fuzzy Expert Systems.
Penalaran Logika Fuzzy
FUZZY TSUKAMOTO UTHIE.
Operator Himpunan Fuzzy
Fuzzy Systems Prof. Dr. Widodo Budiharto 2018
LOGIKA FUZZY. Definisi Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika klasik menyatakan.
Transcript presentasi:

Model Fuzzy Tsukamoto

Model Fuzzy Tsukamoto [A1] IF Permintaan BANYAK And Persediaan BANYAK THEN Produksi Barang BERTAMBAH ; [A2] IF permintaan SEDIKIT And persediaan SEDIKIT THEN Produksi Barang BERKURANG ; [A3] IF Permintaan SEDIKIT And Persediaan BANYAK [A4] IF permintaan BANYAK And persediaan SEDIKIT Berapa barang elektronik tersebut harus diproduksi jika jumlah permintaannya sebanyak 4000 barang dan persediaan di gudang masih 300 barang ?

Contoh (2) Nilai Keanggotaan : Permintaan; terdiri atas 2 himpunan fuzzy, yaitu BANYAK dan SEDIKIT Nilai Keanggotaan : PmtSEDIKIT[4000] = (5000-4000)/(5000-1000) = 0.25 PmtBANYAK[4000] = (4000-1000)/ (5000-1000) = 0.75

Contoh (3) Nilai Keanggotaan : PsdSEDIKIT[300] = (600-300)/(600-100) Persediaan; terdiri atas 2 himpunan fuzzy, yaitu BANYAK dan SEDIKIT Nilai Keanggotaan : PsdSEDIKIT[300] = (600-300)/(600-100) = 0.6 PsdBANYAK[300] = (300-100)/(600-100) = 0.4

Contoh (4) Produksi Barang Nilai Keanggotaan :

Contoh (5) PERMINTAAN PER SE DIAAN B: 0.75 S: 0.25 B: 0.4 Bertambah Berkurang S: 0.6 PERMINTAAN PER SE DIAAN B: 0.75 S: 0.25 B: 0.4 0.4 0.25 S: 0.6 0.6 PERMINTAAN PER SE DIAAN B: 0.75 S: 0.25 B: 0.4 4000 5750 S: 0.6 5000

Contoh (6) Defuzzification: mencaria nilai z. Dapat dicari dengan metoda centroid Tsukamoto : Jadi barang elektronik yang harus diproduksi sebanyak 4983

Summary Ada 4 tahapan utama sistem pakar fuzzy: fuzzifikasi, inferensi, komposisi, defuzzifikasi. Metoda yang paling banyak dipakai Sugeno. Menggunakan fungsi matematik atau konstanta. Sugeno: komputasi lebih efisien tetapi kehilangan interpretabilitas linguistik.

Fungsi Keanggotaan untuk GRE Soal Mengevaluasi mahasiswa berdasarkan GPA dan nilai GRE Fungsi Keanggotaan untuk GRE

Fungsi Keanggotaan untuk GPA

Soal

Soal GRE G P A H M L E VG F