Fuzzy Logic & Markov Systems Session 09

Slides:



Advertisements
Presentasi serupa
2. Introduction to Algorithm and Programming
Advertisements

Cultural Determinants of Schemas
Game Theory Purdianta, ST., MT..
GRADE/ SEMESTER : VII/ I
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Perancangan Database Pertemuan 07 s.d 08
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Menjadi Orang yang Percaya Diri Pertemuan 9 Matakuliah: CB 1 Tahun:
Menulis Kolom  Kolom adalah opini atau artikel. Tidak seperti editorial, kolom memiliki byline.  Kolom Biasanya ditulis reguler. Biasanya mingguan atau.
CONTOH PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno
1 Pertemuan 12 Pengkodean & Implementasi Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Ruang Contoh dan Peluang Pertemuan 05
Masalah Transportasi II (Transportation Problem II)
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
1 Pertemuan 26 NEURO FUZZY SYSTEM Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
Bayu Priyambadha, S.Kom.  Classes, which are the "blueprints" for an object and are the actual code that defines the properties and methods.  Objects,
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Chapter 10 – The Design of Feedback Control Systems PID Compensation Networks.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
ANIFUDDIN AZIS Himpunan Fuzzy dan Operasi Dasar. Dari Himpunan Klasik ke Himpunan Fuzzy Misal U adalah semesta pembicaraan yang berisi semua kemungkinan.
Samples: Smart Goals ©2014 Colin G Smith
How to fix/make sinking office chair reusable Post by:
Jartel, Sukiswo Sukiswo
Pert. 16. Menyimak lingkungan IS/IT saat ini
Induksi Matematika.
Logika Fuzzy dan aplikasinya
Himpunan Fuzzy dan Operasi Dasar
Kode Hamming.
Pengujian Hipotesis (I) Pertemuan 11
Himpunan Fuzzy dan Operasi Dasar
Dasar-Dasar Pemrograman
CA113 Pengantar Manajemen Bisnis
OOAD – TI S1 Defri Kurniawan UDINUS
VECTOR VECTOR IN PLANE.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
Gerund (the -ing form) For example: Kita tidak bisa makan tanpa minum
CA113 Pengantar Manajemen Bisnis
Open and Closed Social Stratification
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Manajemen Proyek Perangkat Lunak (MPPL)
Teknik Modulasi Pertemuan 07
Master data Management
Pertemuan 4 CLASS DIAGRAM.
An assessment of Pedestrian Ways in Unsyiah
A SMALL TRUTH TO MAKE LIFE 100%. Hard Work H+A+R+D+W+O+R+K = 98% Knowledge K+N+O+W+L+E+D+G+E = 96%
How Can I Be A Driver of The Month as I Am Working for Uber?
How the Challenges Make You A Perfect Event Organiser.
Things You Need to Know Before Running on the Beach.
How to Pitch an Event
Don’t Forget to Avail the Timely Offers with Uber
CA113 Pengantar Manajemen Bisnis
Group 3 About causal Conjunction Member : 1. Ahmad Fandia R. S.(01) 2. Hesti Rahayu(13) 3. Intan Nuraini(16) 4. Putri Nur J. (27) Class: XI Science 5.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 4.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Website: Website Technologies.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
Fuzzy Systems Prof. Dr. Widodo Budiharto 2018
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Fuzzy Logic & Markov Systems Session 09 Course : COMP6228 – Artificial Intelligence Effective Period : February 2017 Fuzzy Logic & Markov Systems Session 09

After completing this session, students are expected to be able to: Learning Objective After completing this session, students are expected to be able to: LO 2 : Explain concepts of AI Techniques in Games

Content Introduction to Fuzzy logic Fuzzy Logic Decision Making Fuzzy State Machines Markov Processes Markov State Machine

Fuzzy Logic Decision Making Fuzzy logic studies reasoning systems in which the notions of truth and falsehood are considered in a graded fashion, in contrast with classical mathematics where only absolutly true statements are considered. fuzzy logic is used for decision making and control systems Bob's Health Prof. Lotfi Zadeh

Fuzzy Logic Controller Flow

Fuzzy Sets Theory Classical Set vs Fuzzy set Membership value 1 1 175 Height(cm) 175 Height(cm) Universe of discourse

example Bina Nusantara University

example Bina Nusantara University

Fuzzy components Bina Nusantara University 9 Bina Nusantara University

fuzification Fuzzyfikasi: proses memetakan nilai crisp (numerik) ke dalam himpunan fuzzy dan menentukan derajat keanggotaannya di dalam himpunan fuzzy. Bina Nusantara University

Operations on Fuzzy Relation Bina Nusantara University

Membership functions Bina Nusantara University

Bina Nusantara University

Bina Nusantara University

example Bina Nusantara University

answer Bina Nusantara University

Bina Nusantara University

Example Suatu perusahaan minuman akan memproduksi minuman jenis ABC. Dari data 1 bulan terakhir, permintaan terbesar hingga mencapai 6000 botol/hari, dan permintaan terkecil sampai 500 botol/hari. Persediaan barang digudang terbanyak sampai 800 botol/hari, dan terkecil pernah sampai 200 botol/hari. Sampai saat ini, perusahaan baru mampu memproduksi barang maksimum 9000 botol/hari, demi efisiensi mesin dan SDM tiap hari diharapkan perusahaan memproduksi paling tidak 3000 botol. Bina Nusantara University

[R1] IF Permintaan TURUN And Persediaan BANYAK Apabila proses produksi perusahaan tersebut menggunakan 4 aturan fuzzy sbb: [R1] IF Permintaan TURUN And Persediaan BANYAK THEN Produksi Barang BERKURANG; {R2] IF Permintaan TURUN And Persediaan SEDIKIT [R3] IF Permintaan NAIK And Persediaan BANYAK THEN Produksi Barang BERTAMBAH; [R4] IF Permintaan NAIK And Persediaan SEDIKIT Berapa botol minuman jenis XYZ yang harus diproduksi, jika jumlah permintaan sebanyak 4500 botol, dan persediaan di gudang masih 400 botol? Bina Nusantara University

Ada 3 variabel fuzzy yang akan dimodelkan, yaitu: Permintaan; terdiri-atas 2 himpunan fuzzy, yaitu: NAIK dan TURUN Cari nilai keanggotaan: PmtTURUN[4500] = (6000-4500)/5500 = 0,27 PmtNAIK[4500] = (4500-500)/5500 = 0,72 Fungsi keanggotaan variabel Permintaan Bina Nusantara University

Persediaan; terdiri-atas 2 himpunan fuzzy, yaitu: SEDIKIT dan BANYAK PsdSEDIKIT[400] = (600-400)/600 = 0,667   PsdBANYAK[400] = (400-200)/600 = 0,33 Fungsi keanggotaan variabel Persediaan Bina Nusantara University

Produksi barang; terdiri-atas 2 himpunan fuzzy, yaitu: BERKURANG dan BERTAMBAH Fungsi keanggotaan variabel Produksi Barang Bina Nusantara University

Sekarang kita cari nilai z untuk setiap aturan pada aplikasi fungsi implikasinya:   [R1] IF Permintaan TURUN And Persediaan BANYAK THEN Produksi Barang BERKURANG; -predikat1 = PmtTURUN  PsdBANYAK = min(PmtTURUN [4500],PsdBANYAK[700]) = min(0,27; 0,83) = 0,27 Lihat himpunan Produksi Barang BERKURANG, (9000-z)/6000 = 0,27 ---> z1 = 7380

{R2] IF Permintaan TURUN And Persediaan SEDIKIT THEN Produksi Barang BERKURANG; -predikat2 = PmtTURUN  PsdSEDIKIT = min(PmtTURUN [4500],PsdSEDIKIT[700]) = min(0,667; 0,337) = 0,333 Lihat himpunan Produksi Barang BERKURANG, (9000-z)/6000 = 0,333 ---> z2 = 7002 Bina Nusantara University

[R3] IF Permintaan NAIK And Persediaan BANYAK THEN Produksi Barang BERTAMBAH; -predikat3 = PmtNAIK  PsdBANYAK = min(PmtNAIK [4500],PsdBANYAK[400]) = min(0,72; 0,33) = 0,4 Lihat himpunan Produksi Barang BERTAMBAH, (z-3000)/6000 = 0,333 ---> z3 = 4996 Bina Nusantara University

[R4] IF Permintaan NAIK And Persediaan SEDIKIT THEN Produksi Barang BERTAMBAH; -predikat4 = PmtNAIK  PsdBANYAK = min(PmtNAIK [4500],PsdSEDIKIT[400]) = min(0,72; 0,667) = 0,667 Lihat himpunan Produksi Barang BERTAMBAH, (z-3000)/6000 = 0,667 ---> z4 = 7002 Bina Nusantara University

calculate z Dari sini kita dapat mencari berapakah nilai z, yaitu: Jadi jumlah minuman jenis XYZ yang harus diproduksi sebanyak 6652 botol. Bina Nusantara University

Bob's Healt at 65%

Fuzzy Logic Decision Making Exclusive mapping to states for fuzzy decision making (look further about the process at page 387-390 from your textbook)

Exercise Please run demo code of Fuzzy logic systems from the book: Unity AI game programming, chapter 7

Fuzzy State Machines Although developers regularly talk about fuzzy state machines, they don’t always mean the same thing by it. A fuzzy state machine can be any state machine with some element of fuzziness. It can have transitions that use fuzzy logic to trigger, or it might use fuzzy states rather than conventional states. It could even do both.

Markov Processes Rantai markov (markov chain) adalah suatu metode yang mempelajari sifat-sifat suatu variabel pada masa sekarang yang didasarkan pada sifat-sifatnya di masa lalu dalam usaha menaksir sifat-sifat variabel tersebut di masa yang akan datang.

Markov Processes Conservative Markov Process A conservative Markov process ensures that the sum of the values in the state vector does not change over time. This is essential for applications where the sum of the state vector should always be fixed (where it represents a distribution, for example, or if the values represent the number of some object in the game). The process will be conservative if all the rows in the transition matrix sum to 1.

Markov Processes Iterated Processes It is normally assumed that the same transition matrix applies over and over again to the state vector. There are techniques to calculate what the final, stable values in the state vector will be (it is an eigenvector of the matrix, as long as such a vector exists). This iterative process forms a Markov chain. In game applications, however, it is common for there to be any number of different transition matrices. Different transition matrices represent different events in the game, and they update the state vector accordingly.

Markov Processes Returning to our sniper example, let’s say that we have a state vector representing the safety of four sniping positions: which sums to 4.0. Taking a shot from the first position will alert the enemy to its existence. The safety of that position will diminish. But, while the enemy is focusing on the direction of the attack, the other positions will be correspondingly safer. We could use the transition matrix:

Markov Processes to represent this case. Applying this to the state vector, we get the new safety values: which sums to 3.4. So the total safety has gone down (from 4.0 to 3.4). The safety of sniping point 1 has been decimated (from 1.0 to 0.1), but the safety of the other three points has marginally increased. There would be similar matrices for shooting from each of the other sniping points.

Markov Processes Notice that if each matrix had the same kind of form, the overall safety would keep decreasing. After a while, nowhere would be safe. This might be realistic (after being sniped at for a while, the enemy is likely to make sure that nowhere is safe), but in a game we might want the safety values to increase if no shots are fired. A matrix such as: would achieve this, if it is applied once for every minute that passes without gunfire.

Markov State Machines Using Markov processes, we can create a decision making tool that uses numeric values for its states. The state machine will need to respond to conditions or events in the game by executing a transition on the state vector. If no conditions or events occur for a while, then a default transition can occur.

References Ian Millington. 2009. Artificial intelligence for games. Morgan Kaufmann Publishers. Burlington. ISBN:9780123747310 Stuart Russell. (2010). Artificial intelligence : a modern approach. 03. Pearson Education. New Jersey. ISBN: 9780132071482.