Ukuran Penyimpangan atau Disversi Pertemuan 04

Slides:



Advertisements
Presentasi serupa
BAB-4 UKURAN DESKRIPTIF VARIABEL NUMERIK By M. YAHYA AHMAD
Advertisements

5. Ukuran Sebaran (keragaman)
© 2002 Prentice-Hall, Inc.Chap 3-1 Bab 3 Pengukuran.
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
(MEASURES OF DISPERSION)
Pertemuan 02 Ukuran Numerik Deskriptif
Pengertian dan Peranan Statistika dan Data Statistik Pertemuan 01
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Kuswanto Ukuran Pemusatan Data.
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
UKURAN PENYEBARAN DATA
Appropriate Measures of Central Tendency Nominal variables Mode Ordinal variables Median Interval level variables Mean - If the distribution is normal.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PENDUGAAN PARAMETER Pertemuan 7
UKURAN TENDENSI Ukuran Penyebaran (measure of variability)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
DESKRIPSI DATA (STATISTIKA DESKRIPTIF)
Sebaran Peluang Kontinu (I) Pertemuan 7 Matakuliah: I0014 / Biostatistika Tahun: 2008.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Sebaran Peluang Kontinu (II) Pertemuan 8 Matakuliah: I0014 / Biostatistika Tahun: 2008.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Kuswanto Ukuran keragaman Dari tiga ukuran pemusatan, belum dapat memberikan deskripsi yang lengkap bagi suatu data. Dari tiga ukuran pemusatan,
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
PROBABILITY DISTRIBUTION
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Portofolio Capm.
Metode Statistika (STK211)
STATISTIKA Mean, Median dan Modus.
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Ukuran Pemusatan (Central Tendency)
UKURAN DISPERSI Dr. Srikandi Kumadji, MS.
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
STATISTIK1 Pertemuan 5: Ukuran Penyebaran Dosen Pengampu MK:
UKURAN-UKURAN STATISTIK
Pendugaan Parameter (I) Pertemuan 9
Ukuran Penyimpangan - Variasi -
PENDUGAAN PARAMETER Pertemuan 8
Pertemuan 24 Teknik Searching
STATISTIK1 Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Statistika Deskriptif Pertemuan 2
DISTRIBUSI PROBABILITA
Pilih Menu :. Pilih Menu : Standar Kompetensi Menggunakan aturan statistika dalam menyajikan dan meringkas data dengan berbagai cara: memberi tafsiran,
Pendugaan Parameter (II) Pertemuan 10
Ukuran Variasi atau Dispersi
STATISTIKA DESKRIPTIF
STATISTIK 1 Pertemuan 5,6: Ukuran Pemusatan dan Penyebaran
Ukuran Variasi atau Dispersi
STATISTIK 1 Pertemuan 5,6: Ukuran Pemusatan dan Penyebaran
Ukuran Variasi atau Dispersi
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
VARIABEL ACAK (RANDOM VARIABLES)
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
CENTRAL TENDENCY Hartanto, SIP, MA Ilmu Hubungan Internasional
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Pertemuan 05 Ukuran Deskriptif Lain
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
Mendeskripsikan Data Fadjar Pambudhi.
Kuliah ke 3 Elementary Statistics Eleventh Edition
JENIS DATA PENELITIAN Data kualitatif (qualitative data)
Statistic Process Control Week 3 Ananda Sabil Hussein, SE, MCom.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
UKURAN VARIASI (DISPERSI )
Transcript presentasi:

Ukuran Penyimpangan atau Disversi Pertemuan 04 Matakuliah : L0104 / Statistika Psikologi Tahun : 2008 Ukuran Penyimpangan atau Disversi Pertemuan 04

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung ukuran-ukuran penyimpangan (variabilitas). 3 Bina Nusantara

Outline Materi Measures of Variability Range (Rentang) = [Data max – Data Min] R = largest - smallest Inter Quartil Range (IQR) = Q3 – Q1 Ringkasan Lima Angka Diagram Kotak Garis Ukuran Posisi Relative Rata-rata Simpangan Varians dan Simpangan Baku Koefisien Variasi dan Angka Baku 4 Bina Nusantara

Pengertian Dari Ukuran Penyimpangan Ukuran penyimpangan atau disversi menggambarkan sampai seberapa jauh penyimpangan nilai dari individu-individu itu terhadap ukuran pemusatannya. Atau digunakan untuk mengetahui keseragaman (bervariasinya) data. Makin besar nilai ukuran penyimpangannya maka makin beragam/bervariasi data tersebut Bina Nusantara

R = 14 – 5 = 9. The Range (Rentang) The range, R, of a set of n measurements is the difference between the largest and smallest measurements. Example: A botanist records the number of petals on 5 flowers: 5, 12, 6, 8, 14 The range is R = 14 – 5 = 9. Quick and easy, but only uses 2 of the 5 measurements. Bina Nusantara

Rata-Rata Simpangan (RS) Untuk Data Tidak Berkelompok : RS = 1/NΣ |Xi - µ| untuk populasi, RS = 1/nΣ |Xi – rata-rata X| untuk sampel Rata-Rata Simpangan (RS) Untuk Data Berkelompok (Dalam Tabel Dist Frek) : RS = 1/nΣ fi |Xi – rata-rata X| untuk sampel Dimana n = Σ fi , fi = frekuensi kelas interval dan Xi adalah nilai tengah kelas interval Bina Nusantara

The Variance (Ragam) The variance is measure of variability that uses all the measurements. It measures the average deviation of the measurements about their mean. Flower petals: 5, 12, 6, 8, 14 4 6 8 10 12 14 Bina Nusantara

The Variance The variance of a population of N measurements is the average of the squared deviations of the measurements about their mean m. The variance of a sample of n measurements is the sum of the squared deviations of the measurements about their mean, divided by (n – 1). Bina Nusantara

Key Concepts 2. Variance a. Population of N measurements: b. Sample of n measurements: 3. Standard deviation Bina Nusantara

The Standard Deviation In calculating the variance, we squared all of the deviations, and in doing so changed the scale of the measurements. (inch-> square inch) To return this measure of variability to the original units of measure, we calculate the standard deviation, the positive square root of the variance. Bina Nusantara

Two Ways to Calculate the Sample Variance Use the Definition Formula: 5 -4 16 12 3 9 6 -3 8 -1 1 14 25 Sum 45 60 Bina Nusantara

Two Ways to Calculate the Sample Variance Use the Calculational Formula: 5 25 12 144 6 36 8 64 14 196 Sum 45 465 Bina Nusantara

Some Notes The value of s is ALWAYS positive. The larger the value of s2 or s, the larger the variability of the data set. Why divide by n –1? The sample standard deviation s is often used to estimate the population standard deviation σ. Dividing by n –1 gives us a better estimate of σ. Applet Bina Nusantara

Using Measures of Center and Spread: Tchebysheff’s Theorem Given a number k greater than or equal to 1 and a set of n measurements, at least 1-(1/k2) of the measurement will lie within k standard deviations of the mean. Can be used to describe either samples ( and s) or a population (m and s). Important results: If k = 2, at least 1 – 1/22 = 3/4 of the measurements are within 2 standard deviations of the mean. If k = 3, at least 1 – 1/32 = 8/9 of the measurements are within 3 standard deviations of the mean. Bina Nusantara

Using Measures of Center and Spread: The Empirical Rule Given a distribution of measurements that is approximately mound-shaped: The interval m  s contains approximately 68% of the measurements. The interval m  2s contains approximately 95% of the measurements. The interval m  3s contains approximately 99.7% of the measurements. Bina Nusantara

Measures of Relative Standing How many measurements lie below the measurement of interest? This is measured by the pth percentile. x (100-p) % p % p-th percentile Bina Nusantara

Examples  Median = Q2 50th Percentile 25th Percentile 75th Percentile 90% of all men (16 and older) earn more than $319 per week. BUREAU OF LABOR STATISTICS 2002 10% 90% $319 is the 10th percentile. $319 50th Percentile 25th Percentile 75th Percentile  Median = Q2  Lower Quartile (Q1)  Upper Quartile (Q3) Bina Nusantara

Quartiles and the IQR The lower quartile (Q1) is the value of x which is larger than 25% and less than 75% of the ordered measurements. The upper quartile (Q3) is the value of x which is larger than 75% and less than 25% of the ordered measurements. The range of the “middle 50%” of the measurements is the interquartile range, IQR = Q3 – Q1 Bina Nusantara

Using Measures of Center and Spread: The Box Plot The Five-Number Summary: Min Q1 Median Q3 Max Divides the data into 4 sets containing an equal number of measurements. A quick summary of the data distribution. Use to form a box plot to describe the shape of the distribution and to detect outliers. Bina Nusantara

Constructing a Box Plot Isolate outliers by calculating Lower fence: Q1-1.5 IQR Upper fence: Q3+1.5 IQR Measurements beyond the upper or lower fence is are outliers and are marked (*). Q1 m Q3 * Bina Nusantara

Interpreting Box Plots Median line in center of box and whiskers of equal length—symmetric distribution Median line left of center and long right whisker—skewed right Median line right of center and long left whisker—skewed left Bina Nusantara

Key Concepts IV. Measures of Relative Standing 1. Sample z-score: 2. pth percentile; p% of the measurements are smaller, and (100 - p)% are larger. 3. Lower quartile, Q 1; position of Q 1 = .25(n +1) 4. Upper quartile, Q 3 ; position of Q 3 = .75(n +1) 5. Interquartile range: IQR = Q 3 - Q 1 V. Box Plots 1. Box plots are used for detecting outliers and shapes of distributions. 2. Q 1 and Q 3 form the ends of the box. The median line is in the interior of the box. Bina Nusantara

Key Concepts 3. Upper and lower fences are used to find outliers. a. Lower fence: Q 1 - 1.5(IQR) Batas bawah b. Outer fences: Q 3 + 1.5(IQR) Batas atas 4. Whiskers are connected to the smallest and largest measurements that are not outliers. 5. Skewed distributions usually have a long whisker in the direction of the skewness, and the median line is drawn away from the direction of the skewness. Bina Nusantara

Koefisien Variasi : KV = Simpanga Baku / Rata-rata Catatan : Untuk mengetahui keragaman data secara relatif dapat digunakan Koefisien variasi. Makin besar nilai KV makin bervariasi sebaran data tersebut Contoh …… Bina Nusantara

Angka Baku Z : Z = (Xi – Rata-rata)/Simpanga Baku Catatan : Untuk membandingkan posisi yang lebih baik di dua atau lebih kondisi/lokasi dapat digunakan angka baku makin besar nilai Z dianggap posisinya lebih baik Contoh …… Bina Nusantara

Selamat Belajar Semoga Sukses. Bina Nusantara