Uji Hipotesis.

Slides:



Advertisements
Presentasi serupa
PENGUJIAN HIPOTESIS SAMPEL BESAR
Advertisements

PENGUJIAN HIPOTESIS SAMPEL KECIL
ANALISIS DATA Dr. Adi Setiawan.
DOSEN : LIES ROSARIA., ST., MSI
Modul 7 : Uji Hipotesis.
Bab X Pengujian Hipotesis
STATISTIKA NON PARAMETRIK
ANALISIS KUANTITATIF DALAM PENELITIAN GEOGRAFI
Korelasi Fungsi : Mempelajari Hubungan 2 (dua) variabel Var. X Var. Y.
Statistika Inferensi : Estimasi Titik & Estimasi Interval
Nonparametrik: Data Peringkat II
BAB VI REGRESI SEDERHANA.
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Pengujian Hipotesis Parametrik1
Pengantar Statistika Bab 1 DATA BERPERINGKAT
ANALISA STATISTIK DAN KUALITATIF
Pengenalan Dasar-dasar Statistika Non Parametrik
Anas Tamsuri UJI STATISTIK UJI STATISTIK.
METODOLOGI PENELITIAN
PENGUJIAN HIPOTESIS SAMPEL BESAR
BAB 15 ANALISIS REGRESI DAN KORELASI LINIER
Contoh Korelasi oleh: Jonathan Sarwono
TEKNIK ANALISIS DATA.
STATISTIK INFERENSIAL
STATISTIKA NON PARAMETRIK
UJI HIPOTESIS.
TEORI PENDUGAAN (TEORI ESTIMASI)
PENGOLAHAN dan analisis DATA
UJI HIPOTESIS Tujuan : menentukan apakah dugaan tentang karakteristik suatu populasi didukung kuat oleh informasi yang diperoleh dari data observasi atau.
ANALISIS REGRESI DAN KORELASI LINIER
PERTEMUAN 4 Hipotesis Statistik , Uji Normalitas, Uji Homogenitas dan Uji Hipotesis.
Analisis Koefisien Korelasi Rank Spearman
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
BAB 10 . ANALISIS KORELASI RANK SPEARMAN
METODE PENELITIAN KUANTITATIF (13) FIKOM UNIVERSITAS BUDILUHUR.
UJI TANDA UJI WILCOXON.
Resista Vikaliana, S.Si.MM
Oleh Moh. Amin FE/AKUNTANSI UNISMA
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
Metode Statistik Non Parametrik
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
PENGUJIAN HIPOTESIS SAMPEL BESAR
STATISTIKA Pertemuan 12: Analisis Nonparametrik Dosen Pengampu MK:
Uji Hipotesis.
STATISTIK NON PARAMETRIK
PENELITIAN DAN STATISTIK NON PARAMETRIK
BAB 14 PENGUJIAN HIPOTESIS SAMPEL KECIL
PENGOLAHAN DAN ANALISIS DATA.
HIPOTESIS Hipotesis Penelitian = Hipotesis Konseptual adalah pernyataan yang merupakan jawaban sementara terhadap suatu masalah yang masih harus diuji.
Pengantar Statistika Bab 1 DATA BERPERINGKAT
-ANALISIS KORELASI-.
Pengujian Hipotesis 9/15/2018.
Pengantar Aplikasi Komputer II
PENGUJIAN HIPOTESIS Anik Yuliani, M.Pd.
DASAR-DASAR UJI HIPOTESIS
PENGUJIAN HIPOTESIS KOMPARATIF
REGRESI DAN KORELASI DISUSUN OLEH : 1.AVERIO ALVAREZ ( ) 2.FRANS HENDRIKO MARPAUNG ( ) 3.CLAUDIA ELSHA ALVINCE ( ) 4.STEVEN.
PENGUJIAN HIPOTESIS.
Statistik Non-parametrik
PENGUJIAN HIPOTESIS SAMPEL BESAR
Statisti k Non Parame trik UNIVERSITAS ANDALAS PROGRAM MAGISTER JURUSAN TEKNIK LINGKUNGAN 2018 Dosen Pengampu : Disusun Oleh: ASTRI YULIA NIM:
Analisis KORELASIONAL.
PENGUJIAN HIPOTESIS Pertemuan 10.
Pengujian Sampel Tunggal (1)
PENGUJIAN HIPOTESIS Pertemuan 10.
Statistika Non-Parametrik
UJI HIPOTESIS Indah Mulyani.
Statistika Non-Parametrik
UJI HIPOTESIS Indah Mulyani.
UJI HIPOTESIS.
Transcript presentasi:

Uji Hipotesis

Hipotesis Statistik Suatu anggapan atau dugaan yang mungkin benar atau salah mengenai satu populasi atau lebih. Untuk memastikan hipotesis, diperlukan pengujian data sampel. Tujuan: membuat generalisasi mengenai populasi Keputusan Hipotesis: Penerimaan -> tidak cukup bukti untuk menolak Penolakan -> tidak cukup bukti untuk menerima

Prosedur Uji Hipotesis

Langkah 1: Formulasikan Hipotesis (1/2) Hipotesis nol (H0) adalah sebuah pernyataan status quo, yaitu suatu pernyataan yang tidak berbeda atau tidak berpengaruh. H0 : menyatakan dengan pasti nilai dari parameter (ditulis dalam bentuk persamaan) Hipotesis alternatif (H1) adalah hipotesis yang didalamnya diharapkan ada beberapa perbedaan atau pengaruh. H1 : hipotesis alternatif yang dapat memiliki beberapa kemungkinan (ditulis dalam bentuk pertidaksamaan, seperti >, <, ≠) H0 selalu merupakan hipotesis yang diuji Dalam analisis klasik, tidak mungkin menentukan H0 adalah benar.

Langkah 1: Formulasikan Hipotesis (2/2)    

Arah Pengujian Hipotesis Uji satu arah Pengajuan H0 dan H1 dalam uji satu arah adalah sebagai berikut: - H0 : ditulis dalam bentuk persamaan (menggunakan tanda =) - H1 : ditulis dalam bentuk lebih besar (>) atau lebih kecil (<) - Uji satu arah bersifat lebih kuat dibandingkan dengan uji dua arah. Uji dua arah Pengajuan H0 dan H1 dalam uji dua arah adalah sebagai berikut: - H1 : ditulis dengan menggunakan tanda ≠

SATU ARAH DUA ARAH

Langkah 2: Pilih Pengujian yang Sesuai (2/2)

Langkah 3: Pilih Tingkat Signifikansi (2/2) JENIS GALAT/KESALAHAN/ERROR Kesalahan jenis I : tolak H0 tetapi H0 benar - dinyatakan dengan α (taraf signifikansi /taraf nyata uji) - dikendalikan dengan menentukan tingkat risiko yang dapat ditoleransi dari penolakan sebuah hipotesis nol yang benar Kesalahan jenis II : terima H0 tetapi H0 salah - dinyatakan dengan β - bergantung pada nilai aktual parameter populasi (proporsi)

Langkah 4: Kumpulkan data dan hitung statistik uji Langkah 5: Tentukan Peluang (Nilai Kritis) Langkah 6&7: Bandingkan Probabilitas (Nilai Kritis) dan Buatlah Keputusan Langkah 8: Kesimpulan Riset Pemasaran

Jenis Uji Hipotesis

Jenis-Jenis Uji Hipotesis

Uji Hipotesis Uji parametrik : prosedur-prosedur uji hipotesis yang mengasumsikan bahwa variabel-variabel yang sedang diteliti diukur pada paling sedikit satu skala interval. Uji non-parametrik : mengasumsikan bahwa variabel-variabel yang diteliti diukur pada skala nominal atau ordinal.

Uji Parametrik Satu Sampel - membuat pernyataan mengenai variabel tunggal, contohnya pangsa pasar untuk sebuah produk akan melebihi 15 persen. Dua Sampel Independen - menghubungkan parameter-parameter dari dua populasi yang berbeda, misalnya pengguna dan bukan pengguna sebuah merek dalam hal persepsi mereka terhadap merek tersebut. - sampel yang diambil secara acak dari populasi yang berbeda disebut sampel independen. Dua Sampel Berpasangan - kedua himpunan pengamatan terkait kepada responden-responden yang sama, misalnya memeringkat dua merek yang bersaing, mengevaluasi sebuah merek pada dua waktu yang berbeda.

Uji Non-Parametrik (1/3) Satu Sampel - Uji Runs : uji keacakan untuk variabel-variabel dikotomis; uji ini dilakukan dengan menentukan apakah urutan perolehan pengamatan bersifat acak. - Uji Binomial : menguji kesesuaian jumlah yang diamati dari pengamatan setiap kategori sampai jumlah yang diinginkan di bawah sebuah distribusi binomial yang telah ditentukan spesifikasinya.

Uji Non-Parametrik (2/3) Dua Sampel Independen - Uji U Mann-Whitney : uji statistik untuk sebuah variabel yang diukur diatas sebuah skala ordinal yang membandingkan perbedaan dalam hal lokasi dua populasi berdasarkan pengamatan dari sampel independen. - Uji Median Du Sampel : menentukan apakah kedua kelompok diambil dari populasi-populasi yang mempunyai median yang sama - Uji Kolmogorov Smirnov : menguji apakah kedua distribusi adalah sama

Uji Non-Parametrik (3/3) Dua Sampel Berpasangan - Uji Wilcoxon Matched-Pairs Signed-Ranks : menganalisis perbedaan antara pengamatan yang berpasangan, yang memperhatiakn ukuran perbedaan. - Test Tanda : untuk menguji perbedaan lokasi dari dua populasi, berdasarkan pengamatan berpasangan, yang membandingkan hanya tanda-tanda perbedaan antara pasangan-pasangan variabel tanpa memperhatikan ukuran perbedaan tersebut.

Perbedaan Sampel Kecil dan Besar No Sampel kecil Sampel Besar 1 Jumlah sampel < 30 Jumlah sampel ≥ 30 2 Standar deviasi berfluktuasi relatif besar Standar deviasi berfluktuasi relatif kecil 3 Distribusi t Distribusi z Distribusi t mempunyai nilai kritis yg lebih besar dibandingkan distribusi z . Hal ini terjadi karena distribusi t mempunyai standar deviasi yg lebih besar dibandingkan distribusi z.

Uji t Uji t merupakan sebuah uji hipotesis univariate menggunakan distribusi t, yang digunakan ketika simpangan baku tidak diketahui dan ukuran sampel kecil.

Contoh Satu Sampel Sampel diambil sebanyak 20 responden Sebuah perusahaan ingin memperkenalkan sebuah produk shampo dengan formula baru. Produk ini sebelumnya akan diuji terlebih dahulu sebelum benar-benar dipasarkan. Manajemen memutuskan apabila dari penelitian rata-rata nilai diperoleh minimal sebesar 7 (pada skala 0-10), maka produk ini jadi dipasarkan. Apabila sebaliknya, produk ini tidak jadi dipasarkan. Informasi yang berhasil diperoleh dari riset pemasaran adalah sebagai berikut: Sampel diambil sebanyak 20 responden Hasilnya rata-rata sebesar 7,9 Standard deviasi = 1,6 Tingkat kepercayaan yang digunakan adalah 95% (α=0,05) Apakah produk baru tersebut perlu dipasarkan atau tidak?

Penyelesaian Tentukan hipotesis (H0) dan (H1) Hitung t hitung dengan rumus: Tentukan derajat kebebasan (df) dengan menggunakan rumus n-1, dimana n adalah jumlah sampel.

Penyelesaian Bandingkan dengan t tabel dimana t tabel dilihat dari derajat kebebasan dan α Buat kesimpulan riset pemasaran yaitu jika t hitung lebih besar dari t tabel, maka H0 ditolak dan sebaliknya jika t hitung lebih kecil dari t tabel maka H0 diterima.

Contoh Sampel Berpasangan Sebuah pusat kebugaran memuat iklan sebagai berikut: “Peserta dapat menurunkan berat badannya minimal 20 pounds dalam 30 hari”. Untuk membuktikan kebenaran iklan tersebut, seorang peneliti mengambil sampel sebanyak 10 peserta. Penelitian dilakukan untuk orang yang sama pada saat sebelum melakukan pelatihan dan setelah melakukan pelatihan. Tingkat kepercayaan yang digunakan adalah 95% (α = 0,05)

Penyelesaian Tentukan hipotesis (H0) dan (H1) Hitung t hitung dengan rumus:

Tentukan derajat kebebasan (df) dengan menggunakan rumus n-1, dimana n adalah jumlah sampel. Bandingkan dengan t tabel dimana t tabel dilihat dari derajat kebebasan dan α Buat kesimpulan riset pemasaran yaitu jika t hitung lebih besar dari t tabel, maka H0 ditolak dan sebaliknya jika t hitung lebih kecil dari t tabel maka H0 diterima.

Uji Hipotesis Kolerasi

Uji Hipotesis Korelasi Korelasi untuk sampel dinotasikan dengan r sedangkan untuk populasi dinotasikan ρ (baca rho). Uji korelasi bertujuan untuk menguji hubungan antara dua variabel yang tidak menunjukkan hubungan fungsional (berhubungan bukan berarti disebabkan) Nugroho (2005:35). Uji korelasi tidak membedakan jenis variabel apakah variabel dependen maupun independen.

Koefisien Korelasi Korelasi dinyatakan dalam % keeratan hubungan antar variabel yang dinamakan dengan koefisien korelasi, yang menunjukkan derajat keeratan hubungan antara dua variabel dan arah hubungannya (+ atau -).

Koefisien Korelasi (cont..) Batas-Batas Koefisien Korelasi Menurut Umar (2002:314) nilai koefisien korelasi berkisar antara–1 sampai +1, yang kriteria pemanfaatannya dijelaskan sebagai berikut: Jika, nilai r > 0, artinya telah terjadi hubungan yang linier positif, yaitu makin besar nilai variabel X makin besar pula nilai variabel Yatau makin kecil nilai variabel X makin kecil pula nilai variabel Y. Jika, nilai r < 0, artinya telah terjadi hubungan yang linier negatif, yaitu makin besar nilai variabel X makin kecil nilai variabel Y ataumakin kecil nilai variabel X maka makin besar pula nilai variabel Y . Jika, nilai r = 0, artinya tidak ada hubungan sama sekali antaravariabel X dan variabel Y. Jika, nilai r =1 atau r = -1, maka dapat dikatakan telah terjadihubungan linier sempurna, berupa garis lurus, sedangkan untuk r yang makin mengarah ke angka 0 (nol) maka garis makin tidak lurus.

Koefisien Korelasi (cont..) Batas-batas nilai koefisien korelasi diinterpretasikan sebagaiberikut (Nugroho, 2005:36): 0,00 sampai dengan 0,20 berarti korelasinya sangat lemah. 0,21 sampai dengan 0,40 berarti korelasinya lemah. 0,41 sampai dengan 0,70 berarti korelasinya kuat. 0,71 sampai dengan 0,90 berarti korelasinya sangat kuat. 0,91 sampai dengan 0,99 berarti korelasinya sangat kuat sekali. 1.00 berarti korelasinya sempurna.

Macam-macam Uji Korelasi Uji korelasi terdiri dari uji korelasi Pearson (product moment), Rank Spearman , dan Kendall. Perbedaannya adalah: Korelasi Pearson (product moment) digunakan jika : Sampel datanya lebih dari 30 data (sampel besar) dan kondisi datanya normal Termasuk statistik parametrik2. Korelasi Rank Spearman , dan Kendall  1. Sampel datanya kurang dari 30 data (sampel kecil) dan kondisidatanya tidak normal 2. Termasuk statistik non-parametrik