VEKTOR 2.1.

Slides:



Advertisements
Presentasi serupa
BAB III VEKTOR.
Advertisements

BAB 2 VEKTOR Besaran Skalar Dan Vektor
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
VEKTOR VECTOR by Fandi Susanto.
Matrik dan Ruang Vektor
Vektor dan Skalar Vektor adalah Besaran yang mempunyai besar dan arah.
Vektor oleh : Hastuti.
Bab 1 Analisa Vektor.
Pengantar Vektor.
Diferensial Vektor TKS 4007 Matematika III (Pertemuan II) Dr. AZ
FISIKA LISTRIK DAN MEKANIKA
BAB 2 VEKTOR 2.1.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
ALJABAR LINIER & MATRIKS
Vektor Ruang Dimensi 2 dan Dimensi 3
BAB V (lanjutan) VEKTOR.
Vektor By : Meiriyama Program Studi Teknik Komputer
VEKTOR.
Matakuliah : D0684 – FISIKA I
BESARAN FISIKA DAN SISTEM SATUAN
VEKTOR BUDI DARMA SETIAWAN.
Matakuliah : K0252/Fisika Dasar I Tahun : 2007 Versi : 0/2
1 Pertemuan 01 Matakuliah: K0614 / FISIKA Tahun: 2006.
BESARAN, SATUAN, DIMENSI, VEKTOR
MATA KULIAH MATEMATIKA LANJUT 1 [KODE/SKS : IT / 2 SKS]
(Tidak mempunyai arah)
BAB 1 Vektor.
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR VEKTOR PADA BIDANG.
OPERASI VEKTOR Pertemuan 3
PERKALIAN VEKTOR Di sini ditanyakan apa yang dimaksud dengan fisika.
BAB 2 VEKTOR Pertemuan
Kalkulus 2 Vektor Ari kusyanti.
Vektor.
Besaran Vektor faridisite.wordpress.com.
VektoR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 4 VEKTOR Home.
VEKTOR.
MATERI DASAR FISIKA.
Waktu Praktikum : Jum’at ( – selesai)
VEKTOr Fisika I 4/30/2018.
BESARAN DAN SISTEM SATUAN
Pujianti Donuata, S.Pd M.Si
PENDAHULUAN Pertemuan 1-2
BAB. 3 (Skalar, Vektor) 5/22/
BESARAN FISIKA DAN SISTEM SATUAN
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Aljabar Linier Vektor Oleh: Chaerul Anwar, MTI.
FISIKA DASAR Silabi Tujuan Instruksional Umum (TIU)
Satuan Pendidikan : SMA Mata Pelajaran : Fisika Kelas / Semester : X MIA / Ganjil Materi Pembelajaran : Vektor Alokasi Waktu : 1 x 120 menit.
BAB 3 VEKTOR 2.1.
Oleh : Farihul Amris A, S.Pd.
FISIKA DASAR VEKTOR KELOMPOK 1 ANGGOTA : CHINTA EVA A. ( )
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
BAB I ANALISIS VEKTOR 1.1 SKALAR DAN VEKTOR Skalar Vektor Medan skalar
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
VEKTOR.
PENJUMLAHAN BESARAN VEKTOR
VEKTOR VECTOR by Fandi Susanto.
VEKTOR.
Pengantar Teknologi dan Aplikasi Elektromagnetik
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 2 VEKTOR 2.1.
VEKTOR Dosen : ANDI MARIANI RAMLAN, S.Pd., M.Pd
VEKTOR.
BESARAN & VEKTOR.
Vektor Indriati., ST., MKom.
Komponen vektor merupakan proyeksi vektor pada sumbu sistem koordinat
Transcript presentasi:

VEKTOR 2.1

Besaran Skalar Besaran Vektor z y x 2.1 BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu, suhu, volume, laju, energi Catatan : skalar tidak tergantung sistem koordinat Besaran Vektor z x y Besaran yang dicirikan oleh besar dan arah. Contoh : kecepatan, percepatan, gaya Catatan : vektor tergantung sistem koordinat 2.2

Besar vektor A = A = |A| (pakai tanda mutlak) 2.2 PENGGAMBARAN DAN PENULISAN (NOTASI) VEKTOR Gambar : P Q Titik P : Titik pangkal vektor Titik Q : Ujung vektor Tanda panah : Arah vektor Panjang PQ = |PQ| : Besarnya (panjang) vektor Besar vektor A = A = |A| (pakai tanda mutlak) Notasi Vektor A Huruf tebal Pakai tanda panah di atas A Huruf miring Catatan : Untuk selanjutnya notasi vektor yang digunakan huruf tebal 2.3

Catatan : a. Dua vektor sama jika arah dan besarnya sama A B A = B b. Dua vektor dikatakan tidak sama jika : 1. Besar sama, arah berbeda B A A B 2. Besar tidak sama, arah sama A B A B 3. Besar dan arahnya berbeda A B A B 2.4

2.3 OPERASI MATEMATIK VEKTOR Operasi jumlah dan selisih vektor Operasi kali 2.3.1 JUMLAH DAN SELISIH VEKTOR Metode : Jajaran Genjang Segitiga Poligon Uraian 1. Jajaran Genjang + = A B -B R = A+B S = A-B R = A + B Besarnya vektor R = | R | = Besarnya vektor A+B = R = |R| = A + B + 2 AB cos θ 2 2 2.5 Besarnya vektor A-B = S = |S| = A + B - 2 AB cos θ 2 2

Jika vektor A dan B searah  θ = 0o : R = A + B Jika vektor A dan B berlawanan arah  θ = 180o : R = A - B Jika vektor A dan B Saling tegak lurus  θ = 90o : R = 0 Catatan : Untuk Selisih (-) arah Vektor di balik 2. Segitiga + = A+B A B 3. Poligon (Segi Banyak) + = A B C D A+B+C+D 2.6

Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) 4. Uraian Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) Y A = Ax.i + Ay.j ; B = Bx.i + By.j Ax = A cos θ ; Bx = B cos θ Ay = A sin θ ; By = B sin θ A Ay B By Ax Bx X Besar vektor A + B = |A+B| = |R| Rx = Ax + Bx Ry = Ay + By |R| = |A + B| = Arah Vektor R (terhadap sb.x positif) = tg θ = θ = arc tg 2.7

2.3.2 PERKALIAN VEKTOR 1. Perkalian Skalar dengan Vektor 2. Perkalian vektor dengan Vektor Perkalian Titik (Dot Product) Perkalian Silang (Cross Product) 1. Perkalian Skalar dengan Vektor Hasilnya vektor k : Skalar A : Vektor C = k A Vektor C merupakan hasil perkalian antara skalar k dengan vektor A Catatan : Jika k positif arah C searah dengan A Jika k negatif arah C berlawanan dengan A k = 3, A C = 3A 2.8

2. Perkalian Vektor dengan Vektor Perkalian Titik (Dot Product) Hasilnya skalar A  B = C C = skalar Besarnya : C = |A||B| Cos θ A = |A| = besar vektor A B = |B| = besar vektor B Θ = sudut antara vektor A dan B θ A B B cos θ A cos θ 2.9

Sifat-sifat Perkalian Titik (Dot Product) Komutatif : A  B = B  A Distributif : A  (B+C) = (A  B) + (A  C) Catatan : Jika A dan B saling tegak lurus  A  B = 0 Jika A dan B searah  A  B = A  B Jika A dan B berlawanan arah  A  B = - A  B 2.10

Perkalian Silang (Cross Product) Hasilnya vektor θ A B C = A x B C = B x A Catatan : Arah vektor C sesuai aturan tangan kanan Besarnya vektor C = A x B = A B sin θ Sifat-sifat : Tidak komutatif  A x B B x A Jika A dan B saling tegak lurus  A x B = B x A Jika A dan B searah atau berlawan arah  A x B = 0 = 2.11

2.4 VEKTOR SATUAN Vektor yang besarnya satu satuan Notasi Besar Vektor Dalam koordinat Cartesian (koordinat tegak) Z A k Arah sumbu x : j Arah sumbu y : Y i Arah sumbu z : X 2.12

Sifat-sifat Perkalian Titik (Dot Product) Vektor Satuan = 1 i  j k Sifat-sifat Perkalian silang (Cross Product) Vektor Satuan i x i j x j k x k = i x j j x k k x i k j i i j k 2.13

Contoh Soal 1. Lima buah vektor digambarkan sebagai berikut : Besar dan arah vektor pada gambar di samping : X Y E A C D B Vektor Besar (m) Arah (o) A 19 B 15 45 C 16 135 D 11 207 E 22 270 Hitung : Besar dan arah vektor resultan. Jawab : Vektor Besar (m) Arah(0) Komponen X(m) Komponen Y (m) A B C D E 19 15 16 11 22 45 135 207 270 10.6 -11.3 -9.8 11.3 -5 -22 RX = 8.5 RY = -5.1 Besar vektor R : Arah vektor R terhadap sumbu x positif :  = 329.030 (terhadap x berlawanan arah jarum jam ) = R = 2 X R + 5 . 8 y ) 1 ( - 01 94. = 9.67 m tg  = = - 0,6 2.14

2. Diketahui koordinat titik A adalah (2, -3, 4) 2. Diketahui koordinat titik A adalah (2, -3, 4). Tuliskan dalam bentuk vektor dan berapa besar vektornya ? Vektor Jawab : = + 2 (-3) 4 A 2i – 3j + 4k 29 satuan 3. Tentukanlah hasil perkalian titik dan perkalian silang dari dua buah vektor berikut ini : 2i – 2j + 4k A = i – 3j + 2k B Jawab : Perkalian titik : Perkalian silang : A x B = 2 3 1 4 - k j i = { (-2).2 – 4.(-3)} i – {2.2 – 4.1} j + {2.(-3) – (-2).1} k = (-4+12) i – (4-4) j + (-6+4) k = 8i – 0j – 2j = 8i – 2k A . B = 2.1 + (-2)(-3) + 4.2 = 16

Gambar Vektor Besaran Vektor: Contoh besaran Vektor: Besaran Skalar: Besaran yang memiliki besar (nilai/angka) dan arah Contoh besaran Vektor: Perpindahan, kecepatan, percepatan, gaya,dll Besaran Skalar: Besaran yang hanya memiliki besar (nilai/angka) saja Gambar Vektor Garis kerja Vektor Arah Vektor Besar Vektor Titik tangkap/titik pangkal Vektor Garis kerja Vektor

PENULISAN VEKTOR PENJUMLAHAN & PENGURANGAN VEKTOR Cara Poligon = Vektor A AB = Vektor AB A B PENJUMLAHAN & PENGURANGAN VEKTOR Vektor hasil penjumlahan & pengurangan = Vektor Resultan ( R ) Cara Poligon Penjumlahan & Pe ngurangan Vektor Cara Jajaran Genjang Soal-soal

Nilai dan Arah Resultan Dua Buah Vektor Yang Membentuk Sudut α R = A + B α B a. α = 90º R = A + B A B

Penguraian Vektor Menjadi Komponen- Komponennya ? Ay R α X Ax ??? Dari Mana

Ι A – B Ι ≤ R ≤ Ι A + B Ι Kesimpulan Dari Beberapa Kasus Ι 3 Ι = 3 Besar Resultan yang mungkin dari dari dua buah vektor A dan B adalah: Ι A – B Ι ≤ R ≤ Ι A + B Ι Ι 3 Ι = 3 Ι 5 Ι = 5 Ι 100 Ι = 100 Ι - 3 Ι = 3 Ι - 5 Ι = 5 Ι - 100 Ι = 100 Keterangan: Bila sebuah bilangan diberi tanda mutlak ( Ι …. Ι ), maka diambil nilai yang positif