MEKANIKA TANAH II DISTRIBUSI TEKANAN KONSOLIDASI PENURUNAN TEKANAN TANAH LATERAL DAYA DUKUNG TANAH STABILITAS LERENG HARY CHRISTADY HADIYATMO , Mekanika Tanah II R.F.CRAIG, Soil Mechanics CAPPER, P.L., CASSIE, W.F. dan GEDDES,J.D, Problem Engineering Soils DAS, B.M., Advanced Soil Mechanics LAMBE,.T.W. and WITHMAN.R.V., Soil Mechanics TERZAGHI,K., Theoretical Soil Mechanics TERZAGHI,K., and R.B.PECK, Soil Mechanics in Engineering Practice
TEGANGAN DAN PERPINDAHAN Z x
TEGANGAN DAN PERPINDAHAN Dengan menyamakan momen-momen terhadap titik pusat elemen dan mengabaikan deferensiasi orde tinggi, diperoleh bahwa xz = zx , dengan menyamakan gaya-gaya pada arah x dan z, didapat persamaan-persamaan berikut : x X dan Z adalah body force per satuan volume pada arah x dan z. Ini merupakan persamaan keseimbangan dalam dua dimensi yang dapat juga dinyatakan untuk tegangan efektif. z Regangan geser diperoleh Persamaan yang tidak tergantung pada sifat material, dan dapat digunakan dalam keadaan elastis dan plastis.
F P Y’ Tegangan geser Y O Regangan geser
TEORI BOUSINESQ Analisis tegangan yang terjadi dalam massa tanah akibat pengaruh beban titik di permukaan dapat dilakukan dengan menggunakan teori Boussinesq (1885) Anggapan yang digunakan dalam analisis sebagai berikut : Tanah berupa bahan elastis, homogen, isotropis, dan semi tak terhingga (semi-infinite) Tanah tidak mempunyai berat Hubungan tegangan regangan mengikuti hukum Hooke Distribusi tegangan akibat beban tidak bergantung pada jenis tanah Distribusi tegangan simetri terhadap sumbu vertikal (z) Perubahan volume tanah diabaikan Tanah tidak sedang mengalami tegangan sebelum beban Q
BEBAN TITIK Q z z r r X Q z = konstan r = 0 z = konstan
BEBAN GARIS z X X Q/m z x
BIDANG JALUR MEMIKUL TEKANAN MERATA z X X q z B2 B1
BEBAN JALUR MEMANJANG BEBAN BUJUR SANGKAR Q 0,054q 0,21q +2M -0M 4M
A = B x L L diambil untuk permeter = 4 x 1 = 4 m2 q = Q/A+Wf/A BEBAN JALUR MEMANJANG Q = 2000 kN/m A = B x L L diambil untuk permeter = 4 x 1 = 4 m2 q = Q/A+Wf/A = 2000/(4)+(4x1x1)x24/4 = 524 kN/m2 permeter Dari grafik diperoleh nilai sebesar 0,21q v = 0,21 x 524 = 110,4 kN/m2 permeter -1.00 M v = 110,4 kN/m2 BEBAN BUJUR SANGKAR Q = 2000 kN A = B x L L = B = 4 x 4 = 16 m2 q = Q/A = 2000/16+(4*4*1)x24/16 = 149 kN/m2 Dari grafik diperoleh nilai sebesar 0,054q v = 0,054 x 149 = 8,046 kN/m2 v = 8,046 kN/m2 -14.00 M
TEKANAN BERTAMBAH SECARA LINIER BIDANG JALUR MEMIKUL TEKANAN BERTAMBAH SECARA LINIER z X X z B x R2 R1
BIDANG JALUR MEMIKUL TEKANAN EMBANKMENT z X X z B2 B1
Jorg O. Osterberg, a renowned geotechnical engineer, inventor and university professor for nearly 70 years, died on June 1 in Denver. He was 93. His patented Osterberg Load Test Cell revolutionized the digging of deep foundations for high-rise and other structures. The hydraulically driven bi-directional sacrificial load cell became the first practical and economical method to safely measure the full bearing capacity of a shaft. Osterberg took up study of the new field of soil mechanics in 1931 when he entered Columbia University at age 16. He earned graduate degrees from Harvard and Cornell universities and joined the faculty of Northwestern University, Evanston, Ill., in 1943. He was on staff for 42 years, retiring as professor emeritus of civil engineering. He also consulted widely in the U.S. and abroad. Osterberg was elected to the National Academy of Engineering in 1975 and received the prestigious Karl Terzaghi Award in 1993. “Jorg has justifiably earned his place among the most noteworthy pioneers in the field of geotechnical engineering,” says Raymond J. Krizek, the university’s Stanley F. Pepper professor of civil engineering. Jorg O. Osterberg
Iz = 0.367 Dsz = 0,367x37,2 =13.65kN/m2 PENINGKATAN TEGANGAN DI BAWAH TIMBUNAN Iz = 0.367 Dsz Dsz = 0,367x37,2 =13.65kN/m2 Osterberg, 1957
Engineering deans emeriti: Dr. Ralph E Engineering deans emeriti: Dr. Ralph E. Fadum (left), dean of engineering from 1962 to 1978, with NCSU chancellor emeritus Dr. Larry K. Monteith, dean of engineering from 1978 to 1989.
BEBAN TERBAGI RATA BENTUK EMPAT PERSEGI PANJANG q Z z B L
TEGANGAN DI BAWAH FONDASI PERSEGI Contoh Q q q q q Q = 10.000 kN L = 3 m B = 2 m T = 1 m Z = 5 m Mfp = 3 x 2 x 1 x 24 = 144 kN q0 = (Q+Mfp)/(L x B) = (10.144)/6 = 1.690,67 kN/m2 T q q q q B L Z
I1 I2 I4 I3 I = I1 + I2 + I3 + I4 I = Ii 0.026 Dsz = q 4I 2 1 1,5 3 q0 = 1.690,67 kN/m2 m = L/z = 1,5/5 = 0,3 n = B/z = 1/5 = 0,2 I = 0,026 4I = 4 X 0,026 = 0,104 Dsz = q 4I = 1.690,67 x 0,104 = 175,83 kN/m2 0.026
p? Contoh untuk distribusi tekanan di luar PONDASI dengan BEBAN TERBAGI RATA BENTUK EMPAT PERSEGI PANJANG L1 B1 I1 B2 L2 I I2 p? I = I1 - I2 p = qI
Contoh untuk distribusi tekanan PONDASI dengan BEBAN TERBAGI RATA BENTUK LAIN
Craig Newmark
BEBAN TERBAGI RATA BENTUK LINGKARAN dr d q Z D = 2R
Nomor lingkaran r/z R lingkaran (AB) = 5 1 0.1 0.2698 1.3488 2 0.2 0.4005 2.0025 3 0.3 0.5181 2.5905 4 0.4 0.6370 3.1848 5 0.5 0.7664 3.8321 6 0.6 0.9176 4.5881 7 0.7 1.1097 5.5485 8 0.8 1.3871 6.9354 9 0.9 1.9083 9.5415 10
BEBAN TERBAGI RATA BENTUK TIDAK TERATUR
PENAMBAHAN TEGANGAN DI BAWAH FONDASI PERSEGI CARA 2V : 1H B + z q0 2vertikal 1horizontal z Fondasi B x L
Pasir Lempung Pasir padat
PENAMBAHAN TEKANAN AKIBAT BEBAN Q Fondasi B x L q B prata-rata = ?
PENAMBAHAN TEGANGAN DI BAWAH FONDASI PERSEGI CARA 2V : 1H B + z q0 2vertikal 1horizontal z Fondasi B x L
PENAMBAHAN TEGANGAN DI BAWAH FONDASI PERSEGI CARA 2V : 1H (L+Z1) Z3 Z1 Z2 (L+Z2) (B+Z1) (L+Z3) (B+Z2) A1= (B+Z1) x (L+Z1) A2= (B+Z2) x (L+Z2) (B+Z3) A3= (B+Z3) x (L+Z3)
Q q B Z1 Z2 Z3 A1= (B+Z1) x (L+Z1) A2= (B+Z2) x (L+Z2) PENAMBAHAN TEKANAN AKIBAT BEBAN METODE 2V : 1H Q Fondasi A0= B x L q B Z1 Z2 Z3 A1= (B+Z1) x (L+Z1) A2= (B+Z2) x (L+Z2) A3= (B+Z3) x (L+Z3)
AKIBAT BERAT SENDIRI (OVERBURDEN) PENAMBAHAN TEKANAN AKIBAT BERAT SENDIRI (OVERBURDEN) p0 = Z z1 1 1z1 z2 2 2z2 3z3 z3 3