HIMPUNAN Rani Rotul Muhima.

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
BAB II HIMPUNAN.
Pertemuan I-III Himpunan (set)
Dasar Logika Matematika
Waniwatining II. HIMPUNAN 1. Definisi
Himpunan Pertemuan Minggu 1.
MATEMATIKA BISNIS HIMPUNAN.
Matematika Informatika 1
Bahan kuliah IF2120 Matematika Diskrit
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
BAB II HIMPUNAN.
MATEMATIKA DISKRET PERTEMUAN 2 HIMPUNAN
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
Pertemuan ke 4.
DPH1A3-Logika Matematika
HIMPUNAN.
Bahan kuliah Matematika Diskrit
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
LOGIKA MATEMATIKA PERTEMUAN 1 HIMPUNAN I
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
Himpunan Fakultas Ilmu Terapan Universitas Telkom
Bahan kuliah Agribisnis study club Frogram Study Agribisnis
BAB 1 Himpunan
BAB II HIMPUNAN.
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
Matematika Diskrit (1) Himpunan.
Pertemuan 6 HIMPUNAN.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
Disusun Oleh: Novi Mega S
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
Himpunan (Lanjutan).
HIMPUNAN.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI UT HIMPUNAN dan SISTEM BILANGAN.
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
PENDAHULUAN : ALJABAR ABSTRAK
MATEMATIKA EKONOMI HIMPUNAN dan SISTEM BILANGAN Ir Tito Adi Dewanto.
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Himpunan.
Heru Nugroho, S.Si., M.T. No Tlp : Semester Ganjil TA
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Logika Matematika Himpunan Sri Nurhayati.
Dasar Logika Matematika
BAB 1 Himpunan
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

HIMPUNAN Rani Rotul Muhima

Prinsip Inklusi Eksklusi Tujuan Kuliah Ini... Konsep Operasi Prinsip Dualitas Prinsip Inklusi Eksklusi

Definisi... Himpunan adalah sekumpulan objek berbeda yang terdefinisi dengan jelas Objek di dalam himpunan disebut elemen, unsur, atau anggota

Keanggotaan Himpunan a  A a  A Untuk menyatakan bahwa sebuah objek a adalah anggota sebuah himpunan A, menggunakan notasi a  A Sebaliknya a  A a bukan merupakan anggota himpunan A

Notasi pembentuk himpunan Cara Penyajian Diagram Venn Enumerasi Simbol Baku Notasi pembentuk himpunan

Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Contoh - Himpunan tiga bilangan prima pertama: P = { 2, 3, 5}. - Himpunan lima bilangan ganjil positif pertama: Q = {1, 3, 5, 7,9}. - R = { a, b, {a, b, c}, {a, c} } - C = {a, {a}, {{a}} } - K = { {} } - Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 } - Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.

Misal  A1 = {a, b}, A2 = { {a, b} }, A3 = {{{a, b}}}, maka  a  A1

Simbol Baku P = himpunan bilangan bulat positif = { 1, 2, 3, ... } N = himpunan bilangan alami (natural) = { 1, 2, ... } Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks Himpunan yang universal: semesta, disimbolkan dengan U. Contoh: Misalkan U = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari U, dengan A = {1, 3, 5}.

Notasi Pembentuk Himpunan

Diagram Venn

Istilah Istilah dalam Himpunan Kardinalitas Jumlah elemen di dalam A disebut kardinal dari himpunan A. Notasi: n(A) atau A  Contoh a. B = { x | x merupakan bilangan prima lebih kecil dari 15 }, tau B = {2, 3, 5, 7, 11, 13} maka B = 6 b. T = {kucing, a, Amir, 10, paku}, maka T = 5 c. A = {a, {a}, {{a}} }, maka A = 3

2. Himpunan kosong (null set)

3. Himpunan Bagian B A C Notasi: A  B A = B  (A  B)  (B  A) (A  B)  (B  C)  A  C) U C B A 13

Contoh Soal Misalkan A = {1, 2, 3} dan B = {1, 2, 3, 4, 5}. Tentukan semua kemungkinan himpunan C sedemikian sehingga A  C dan C  B, yaitu A adalah proper subset dari C dan C adalah proper subset dari B.

Penyelesaian C harus mengandung semua elemen A = {1, 2, 3} dan sekurang-kurangnya satu elemen dari B. Dengan demikian, C = {1, 2, 3, 4} atau C = {1, 2, 3, 5}. C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

4.Himpunan yang Sama

5.Himpunan yang Ekivalen Notasi A ~ B  A = B Contoh: Misalkan A = { 1, 3, 5, 7 } dan B = { a, b, c, d }, maka A ~ B sebab A = B = 4

6.Himpunan Saling Lepas

7.Himpunan Kuasa (Power Set) Notasi : 2A atau P(A) “power set dari A” Contoh: 1. A = {x, y, z} 2A = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} 2. A =  2A = {} Catatan : |A| = 1, |2A| = 2, yaitu: {, {}}. 21

Operasi Terhadap Himpunan