PEMROSESAN BAHASA ALAMI

Slides:



Advertisements
Presentasi serupa
Rully Yulian MF MCAD,MCPD,MCT,MVP VB.NET Independent IT Trainer - Application Developer
Advertisements

Self Organizing Maps Tim Asprak Metkuan
Function.
EXPRESSING LOCATION.
STRUKTUR DATA (4) Array Stack(Tumpukkan) dan Queue (Antrian)
OPERATOR OVERLOADING The ability to provide the operators with a special meaning for a data type but its original meaning is not lost. Example: Operator.
Class.
Mata Kuliah : Metode Numerik Gianinna Ardanewari
Procedure & Function Sub Program.
Lecture 5 Minimax dengan αβ Pruning Erick Pranata
RANGKAIAN LOGIKA KOMBINASIONAL
SUBPROGRAM IN PASCAL PROCEDURE Lecture 5 CS1023.
Validitas & Reliabilitas
ARRAY RUBY. PENDAHULUAN Ruby's arrays are untyped and mutable. The elements of an array need not all be of the same class, and they can be changed at.
Class and Object Introduction Specifying a Class Defining Member Function A C++ Program with Class Nesting of Member Functions Private Member Functions.
Clustering. Definition Clustering is “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
LKS JEPUN By; Ni Wayan Ari Sukayanti NPM : 3284 Class : VI H ENGLISH DEPARTMENT FACULTY OF TEACHER TRAINING AND EDUCATION UNIVERSITY OF MAHASARASWATI.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
Masalah Transportasi II (Transportation Problem II)
Klik Disini Untuk Mulai
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
DISTRIBUSI PROBABILITA KONTINU
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan 26 Compound Nouns Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pertemuan 12 WIDROW HOFF LEARNING Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Bayu Priyambadha, S.Kom.  Classes, which are the "blueprints" for an object and are the actual code that defines the properties and methods.  Objects,
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Jaringan Nirkabel Bab #5 – Enkoding Sinyal.
Jartel, Sukiswo Sukiswo
KOMUNIKASI DATA Materi Pertemuan 3.
Identifikasi Jenis Suara pada Manusia
Recurrence relations.
KOMUNIKASI DATA Materi Pertemuan 2.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
“LITERASI OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA MELALUI PENGEMBANGAN MEDIA PEMBELAJARAN MATEMATIKA BERBASIS EKSPLORASI BAGI GURU-GURU SD/MI DI KECAMATAN.
Nama Anggota Kelompok: Erna Fatayati (G ) Dirman Hafiz (G )
Pertemuaan 2 Fitri Amillia, S.T., M.T.
Clustering Best Practice
Dasar-Dasar Pemrograman
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Pseudo-code.
Analytical Hierarchy Process ( AHP )
Pengenalan Jenis Kelamin Melalui Suara Menggunakan MFCC dan K-Means
Array Buat algoritma untuk mencari nilai terbesar dari 5 nilai mahasiswa yang diinputkan dengan array.
Class.
Oleh : Devie Rosa Anamisa
Image Segmentation.
Open and Closed Social Stratification
Rekursif- studi kasus.
Perceptron.
Teknik Pengujian Software
Pertemuan 4 CLASS DIAGRAM.
Self-Organizing Network Model (SOM) Pertemuan 10
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Pembelajaran terbimbing dengan pendekatan parametriks dan nonparametriks Kuliah 3.
Simultaneous Linear Equations
K-Nearest Neighbourhood (KNN)
Group 3 About causal Conjunction Member : 1. Ahmad Fandia R. S.(01) 2. Hesti Rahayu(13) 3. Intan Nuraini(16) 4. Putri Nur J. (27) Class: XI Science 5.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
How do I Add or Remove a delegate to my Gmail account? Google launched delegation service 9 years ago for Gmail that allows you to give permission to access.
INTERROGATIVE ADJECTIVE. DEFINITION FUNCTION EXAMPLE QUESTION.
Pendahuluan MATLAB (Matrix Laboratory) adalah sebuah program untuk analisis dan komputasi numerik yang merupakan bahasa pemrograman matematika lanjutan.
SIMILES. The comparison is carried out using the words ‘like’ as etc. Example : 1. as free as a bird. The word ‘free’ is compared with the word ‘bird’
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
CLASS VS OBJECT INTRODUCTION OF CLASS. keyword class diikuti dengan nama class yang kita inginkan. Lebih baik digunakan kata yang diawali huruf.
Transcript presentasi:

PEMROSESAN BAHASA ALAMI codebook PEMROSESAN BAHASA ALAMI

CodeBook Code book merupakan salah teknik untuk melakukan pengenalan berbasis jarak Tahap Data hasil ekstraksi ciri Lakukan klastering Hitung jarak setiap data uji terhadap anggota cluster (codeword) Ambil jarak minimum setiap data uji ke data latih Hitung total jarak minimum setiap kelas Bandingkan Ambil yang paling minimum

Example There are two class of signals : z and y z have two training data y have two training data We are using mfcc with 5 Cepstrum Coefficient We are using kmeans and codebook with three codewords

Training data, after mfcc z{1}= [ 4.0044 4.1856 8.0696 6.3278 8.1128 10.2260 0.2177 0.3073 -0.0025 2.2093 2.5361 2.2863 -0.2909 -0.1256 0.1222 0.2727 0.0405 -1.2725 -0.0850 -0.0787 0.1232 0.2019 -0.2277 -1.0746 -0.1214 -0.1909 0.0884 -0.0370 -0.4269 -1.1268 ]

Training data z{2}= [ -0.1873 0.0335 -0.1928 -0.3006 -0.6132 -0.2678 -0.1231 0.0771 -0.6213 -0.1611 0.0779 0.5110 -0.0106 -0.2889 -0.6583 0.0156 0.1699 0.5658 0.2172 -0.1252 -0.6871 -0.5324 -0.5785 -0.5386 0.2583 0.0267 -0.5026 -0.1013 0.1435 0.2852 ]

Training data y{1}= [ 4.7608 3.8921 4.2835 7.1905 8.2474 10.0080 0.0407 0.3190 0.2916 0.8016 1.4601 1.7999 -0.1334 -0.1925 -0.4114 0.2943 -0.0699 -1.2339 -0.1844 0.1873 -0.3004 0.0757 -0.0235 -1.3585 -0.2420 0.2137 -0.3556 0.0521 -0.2482 -0.5764 ]

Training data y{2} = [ -0.0463 0.1805 0.0031 0.1331 -0.3234 -0.4808 0.1873 0.0672 -0.0587 -0.1563 -0.1065 0.5782 -0.2422 -0.0752 -0.2039 -0.3196 0.2894 0.7126 -0.4076 -0.2417 -0.3764 -0.4488 -0.3783 -0.7561 -0.4517 -0.2601 -0.4371 -0.1502 0.0342 0.5024]

Testing data, another signal (z/y ?) c = [ -0.3559 -0.2604 0.0499 -0.1349 -0.1636 0.0684 -0.1981 -0.4490 -0.2895 0.4798 0.5276 0.8168 -0.0056 -0.3482 -0.3275 0.1151 0.3650 -0.2092 -0.2390 -0.2777 -0.0560 -0.6278 -0.7292 -0.4220 -0.0829 0.0096 0.3314 -0.3953 0.3601 0.1881 ]

mybuildmodel function [idxz, rz, idxy, ry]=mybuildmodel(z,y) allz=[]; for i=1:size(z,2) allz=[allz z{i}]; end allz=allz';   [idxz, rz]= kmeans(allz,3); rz=rz';

mybuildmodel (2) ally=[]; for i=1:size(y,2) ally=[ally y{i}]; end   for i=1:size(y,2) ally=[ally y{i}]; end ally=ally'; [idxy, ry]= kmeans(ally,3); ry=ry';

mycountdist function myclass=mycountdist(idxz, rz, idxy, ry,resultmfccnew) mydistz=0; mydisty=0; for framenya=1:size(resultmfccnew,2) min=1;

mycountdist (2) minjarz=dist([rz(:,1) resultmfccnew(:,framenya)]);   for j=2:3 jarz=dist([rz(:,j) resultmfccnew(:,framenya)]); if jarz<=minjarz minjarz=jarz; end mydistz=mydistz+minjarz;

mycountdist (3) minjary=dist([ry(:,1) resultmfccnew(:,framenya)]); for j=2:3 jary=dist([ry(:,j) resultmfccnew(:,framenya)]); if jary<=minjary minjary=jary; end mydisty=mydisty+minjary;

mycountdist (4) disp(‘distance to class z'); disp(mydistz); disp(' distance to class y'); disp(mydisty); if mydistz<=mydisty myclass=1; disp(‘This signal is member of class z'); else myclass=2; disp(' This signal is member of class y'); end

In MATLAB command window [idxz, rz, idxy, ry]=mybuildmodel(z,y) theclass=mycountdist(idxz, rz, idxy, ry,c)