Fika Hastarita Rachman Semester Genap 2011/2012

Slides:



Advertisements
Presentasi serupa
1.DERET TAYLOR DAN ANALISIS GALAT
Advertisements

METODE NUMERIK BAB I.
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
DERET TAYLOR & ANALISIS GALAT
Matematika rekayasa TL 2105 rofiq iqbal.
METODE NUMERIK EDY SUPRAPTO 1.
By: NI WAYAN SUARDIATI PUTRI, S.Pd, M.Pd
Pendahuluan Metode Numerik Secara Umum
METODE NUMERIK Buku : Metode Numerik untuk Teknik
Pendahuluan Metode Numerik Secara Umum
METODE NUMERIK „Hampiran dan Galat”
1. PENDAHULUAN.
Deret Taylor dan Analisis Galat
3. HAMPIRAN DAN GALAT.
BILANGAN TITIK-KAMBANG (FLOATING-POINT)
METODE NUMERIK.
4. SOLUSI PERSAMAAN NON-LINIER.
DERET TAYLOR DAN ANALISIS GALAT
BAB II Galat & Analisisnya.
ANALISIS GALAT (Error) Pertemuan 2
Metode Numerik.
2. Konsep Error.
1. PENDAHULUAN.
Metode Numerik Analisa Galat & Deret Taylor
TEORI KESALAHAN (GALAT)
Mata Kuliah Metode Numerik Semester 6 (2 SKS)
Analisis Numerik (S0262) Silabus Pendekatan dan kesalahan
METODE NUMERIK Kesalahan / Error
Kontrak Perkuliahan dan Pengenalan Metode Numerik
Pendekatan dan Kesalahan
DERET TAYLOR DAN ANALISIS GALAT
Kesalahan Pemotongan.
METODE NUMERIK PRESENTED by DRS. MARZUKI SILALAHI.
DERET TAYLOR DAN ANALISIS GALAT
Jenis Galat (Error) Anggota Kelompok: Muhammad Taufiq P
Teknik Informatika-Unitomo Anik Vega Vitianingsih
Metode Numerik Gabriel S.
Metode numerik secara umum
Edy mulyanto METODE NUMERIK Edy mulyanto
ANALISA NUMERIK 1. Pengantar Analisa Numerik
Aflich Yusnita F, M.Pd. STKIP SILIWANGI BANDUNG
oleh Ir. Indrawani Sinoem, MS.
METODE NUMERIK MUH. FITRULLAH, ST. Buku : Metode Numerik untuk Teknik
Metode Numerik Analisa Galat & Deret Taylor
Matematika rekayasa TL 2105 rofiq iqbal.
PERTEMUAN 1 PENDAHULUAN
Metode Numerik dan Metode Analitik Pertemuan 1
Kontrak Perkuliahan dan Pengenalan Metode Numerik
BAB II Galat & Analisisnya.
Deret Taylor dan Analisis Galat Indriati., ST., MKom.
Kuliah Pendahuluan/ Pertemuan Ke-1 | Ismail
Metode Numerik Oleh: Swasti Maharani.
Metode Numerik (3 SKS) Kuliah pertama
METODE NUMERIK IRA VAHLIA.
Program S1 Teknik Informatika Sekolah Tinggi Teknologi Nurul Jadid
Materi I Choirudin, M.Pd PERSAMAAN NON LINIER.
Pendekatan dan Kesalahan
Standar Kompetensi : Memecahkan masalah berkaitan
METODE NUMERIK MENGHITUNG KESALAHAN.
ANALISIS KURIKULUM Kelompok 4
ANGKA PENTING.
(Pertemuan 1) Oleh : Wiwien Widyastuti
Review Kalkulus dan Aritmatika Komputer
Pendahuluan Metode Numerik Secara Umum
METODE NUMERIK „Pendekatan dan Analisa Kesalahan”
MATA KULIAH: METODE NUMERIK
METODE NUMERIK (3 SKS) STMIK CILEGON.
DERET TAYLOR DAN ANALISIS GALAT
REKAYASA KOMPUTASIONAL : Pendahuluan
Metode numerik A SKS S1 Teknik Informatika
Transcript presentasi:

Fika Hastarita Rachman Semester Genap 2011/2012 METODE NUMERIK Fika Hastarita Rachman Semester Genap 2011/2012

Pembahasan Definisi Umum Metode Analitik vs Metode Numerik Pendekatan dan Kesalahan Sumber Kesalahan

Mengapa Metode Numerik Seringkali beberapa persoalan matematika yang tidak selalu dapat diselesaikan oleh program aplikasi. Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti Teknik Sipil, Teknik Mesin, Elektro, dan sebagainya. Model matematika yang rumit ini adakalanya tidak dapat diselesaikan dengan metode analitik yang sudah umum untuk mendapatkan solusi sejatinya (exact solution).

Ilustrasi Persoalan Matematik

Metode Analitik metode penyelesaian model matematika dengan rumus-rumus aljabar yang sudah baku (lazim). Metode analitik metode sebenarnya dapat memberikan solusi sebenarnya (exact solution) solusi yang memiliki galat/error = 0. Metode analitik hanya unggul pada sejumlah persoalan matematika yang terbatas

Metode Numerik Metode numerik = teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipecahkan dengan operasi hitungan / aritmatika biasa. Solusi angka yang didapatkan dari metode numerik adalah solusi yang mendekati nilai sebenarnya / solusi pendekatan (approximation) dengan tingkat ketelitian yang kita inginkan. Karena tidak tepat sama dengan solusi sebenarnya, ada selisih diantara keduanya yang kemudian disebut galat / error. Metode numerik dapat menyelesaikan persoalan didunia nyata yang seringkali non linier, dalam bentuk dan proses yang sulit diselesaikan dengan metode analitik

Prinsip Metode Numerik Metode numerik ini disajikan dalam bentuk algoritma – algoritma yang dapat dihitung secara cepat dan mudah. Pendekatan yang digunakan dalam metode numerik merupakan pendekatan analisis matematis, dengan tambah angrafis dan teknik perhitungan yang mudah. Algoritma pada metode numerik adalah algoritma pendekatan maka dalam algoritma tersebut akan muncul istilah iterasi yaitu pengulangan proses perhtungan. Dengan metode pendekatan, tentunya setiap nilai hasil perhitungan akan mempunyai nilai error (nilai kesalahan).

Tahap Pemecahan Persoalan Pemodelan Penyederhanaan model Formulasi Numerik Pemrograman Operasional (uji coba) Evaluasi

Sumber kesalahan Kesalahan pemodelan contoh: penggunaan hukum Newton asumsi benda adalah partikel Kesalahan bawaan contoh: kekeliruan dlm menyalin data salah membaca skala Ketidak tepatan data Kesalahan pemotongan (truncation error) Kesalahan pembulatan (round-off error)

Pengantar Setiap Manusia  ↓ Kesalahan Kesalahan  ↑ ↑ Biaya  ↑ ↑ Korban, dll Kesempurnaan  tujuan yang terpuji Masalah? (sangat jarang terjadi) Contoh Kasus: Aproksimasi “best”  Hk. Newtons II Kecepatan benda jatuh = v2g.h BAGAIMANA KALAU ADA Angin?  Perubahan tekanan Udara?  Dimensi Benda? Deviasi (Penyimpangan)

Pendekatan dan Kesalahan Angka Signifikan (Penting) Akurasi dan Presisi Definisi Kesalahan Kesalahan Pembulatan Kesalahan Pemotongan Kesalahan Numerik Total (Kekeliruan, Kesalahan Formulasi, dan Ketidakpastian Data)

Sampai berapa besar kesalahan itu dapat ditolerir?

Angka Signifikan (AS) Komputasi thd suatu bilangan  Bilangan hrs meyakinkan ? Konsep angka signifikan  keandalan sebuah nilai numerik Banyak angka signifikan  banyaknya digit tertentu yg dpt dipakai dengan meyakinkan Selain angka signifikan, jg ada angka taksiran Angka 0 (nol) tdk sll pasti mjd angka signifikan, why? Ketidakpastian kepastian, jk pakai notasi ilmiah How? 0,000123  mengandung 3 AS (nol bkn merupakan AS) 0,00123  mengandung 3 AS (nol bkn merupakan AS) 12.300  Tidak jelas berapa AS, karena msh di?kan nol itu berarti atau tidak…! 1,23 x 104  mengandung 3 AS (memakai notasi ilmiah) 1,230 x 104  mengandung 4 AS (memakai notasi ilmiah) 1,2300 x 104  mengandung 5 AS (memakai notasi ilmiah)

Dua arti penting angka signifikan Angka Signifikan (AS) Dua arti penting angka signifikan “AS memberikan pengabaian dari angka signifikan sisa utk besaran-besaran yang spesifik yang tidak bisa dinyatakan secara eksak krn jumlah digit yang terbatas”  (kesalahan pembulatan/round-off-error) “AS akan memberikan kriteria untuk merinci seberapa keyakinan kita mengenai hasil pendekatan dalam metode numerik”

Akurasi dan Presisi Presisi Jumlah angka signifikan yg menyatakan suatu besaran Penyebaran dlm bacaan berulang dari sebuah alatyg mengukur suatu perilaku fisik tertentu Akurasi Dekatnya sebuah angka pendekatan atau pengukuran thd harga sebenarnya yagn hendak dinyatakan Inakurasi (Tdk akurat) Simpangan sistematis dari kebenaran Kesalahan  “mewakili dua hal yaitu tidak akurat dan tidak presisi dari ramalan yang dilakukan”

Definisi Kesalahan Kesalahan Numerik  Adanya aproksimasi Meliputi: Kesalahan pemotongan (truncation error)  saat aproksimasi digunakan utk menyatakan suatu prosedur matematika eksak. Kesalahan pembulatan (round-off error)  ketika angka2 aproksimasi dipakai utk menyatakan angka-angka pasti. Sehingga, bisa dihubungkan: Harga Sebenarnya = pendekatan + Kesalahan Bisa dikatakan: “Kesalahan numerik adalah setara terhadap ketidakcocokan antara yang sebenarnya dan aproksimasi” Et = Harga sebenarnya – aproksimasi; Dimana, Et = harga pasti dari kesalahan; huruf t dimaksudkan bahwa ia adalah kesalahan “sebenarnya”

εa = (Kesalahan aproksimasi/Aproksimasi)x 100% Definisi Kesalahan Alternatif yg selalu dipakai dlm menormalisasi kesalahan dgn mengunakan taksiran terbaik dari harga yang sebenarnya terhadap kesalahan aproksimasi itu sendiri, yaitu sbb: εa = (Kesalahan aproksimasi/Aproksimasi)x 100% Dimana: a = kesalahan tersebut dinormalisasikan thd sebuah harga aproksimasi. Masalah & Sekaligus tantangan dlm Met-Num  “menentukan taksiran kesalahan tanpa pengetahuan mengenai harga yang sebenarnya”

Kesalahan / Galat

Terima Kasih