GELOMBANG Pertemuan Mata kuliah : K0014 – FISIKA INDUSTRI

Slides:



Advertisements
Presentasi serupa
Gelombang Bunyi.
Advertisements

GELOMBANG MEKANIK Transversal Longitudinal.
GELOMBANG OLEH MEGAWATI.
Created By Hendra Agus S ( )
GELOMBANG MEKANIK GELOMBANG PADA TALI/KAWAT
Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi.
GELOMBANG Gelombang Transversal Gelombang Longitudinal
Kuliah Gelombang Pertemuan 02
Pertemuan XIII GELOMBANG DAN BUNYI.
FI-1201 Fisika Dasar IIA Kuliah-14 Fenomena Gelombang PHYSI S.
BAB 2 GELOMBANG MEKANIK PERSAMAAN GELOMBANG TRANSMISI DAYA
GELOMBANG MEKANIK.
GEJALA GELOMBANG A. Gelombang berjalan PERSAMAAN UMUM: Yo= Asin θ
Bab 3 bunyi.
GERAK GELOMBANG.
TRAVELING WAVE, STANDING WAVE, SUPERPOSISI WAVE
GELOMBANG ELEKTROMAGNETIK Pertemuan 21-22
Gelombang Bunyi.
Matakuliah : K FISIKA Tahun : 2007 GELOMBANG Pertemuan
UNIVERSITAS NEGERI PADANG
Matakuliah : D0684 – FISIKA I
OSILASI, GELOMBANG, BUNYI
GELOMBANG BUNYI Pertemuan 25
GELOMBANG BUNYI Penjalaran dan laju gelombang bunyi,Resonansi bunyi, Tingkat Intensitas,Efek Doppler.
Gelombang Mekanik.
GETARAN DAN GELOMBANG
Gelombang Gambaran Umum Representasi Gelombang Gelombang Tali
GELOMBANG MEKANIK.
Gelombang stasioner Amplitudo gelombang stasioner dinyatakan dengan :
Berkelas.
GELOMBANG STASIONER.
BAB 1 .GERAK GELOMBANG Gejala gelombang Apakah gelombang itu
Matakuliah : D0564/Fisika Dasar Tahun : September 2005 Versi : 1/1
Matakuliah : K0614 / FISIKA Tahun : 2006
GETARAN DAN GELOMBANG
GELOMBANG BERJALAN DAN GELOMBANG STASIONER
Bunyi (SOUND), Gelombang : getaran yang merambat melalui medium.
Modul 11. Fisika Dasar II I. Gelombang Bunyi
Pertemuan 5 Keseimbangan
TeORi GeLoMBaNg.
y ASin   2 ft Modul 10 Fisika Dasar II I. GELOMBANG
Penjalaran gelombang, Bila dinyatakan dalam frekuensi, persamaan gelombang dituliskan sebagai : Secara umum persamaan gelombang dituliskan sebagai :
GELOMBANG BUNYI Penjalaran dan laju gelombang bunyi,Resonansi bunyi, Tingkat Intensitas,Efek Doppler.
4/16/ Gelombang Mekanis Gelombag didalam medium yang dapat mengalami deformasi atau medium elastik. Gelombang ini berasal dari pergeseran suatu.
Gelombang Bunyi.
Review gelombang bunyi
Gelombang Mekanik Gelombang mekanik adalah suatu gangguan yang berjalan melalui beberapa material atau zat yang dinamakan medium untuk gelombang itu. Gelombang.
Tugas Mandiri 1 (P01) Perorangan
BUNYI OLEH M. BARKAH SALIM, M. Pd. SI. PERTEMUAN 10
Pertemuan XI GELOMBANG DAN BUNYI.
Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL.
GETARAN DAN GELOMBANG Standat Kompetensi:
GELOMBANG MEKANIK.
Gelombang Mekanik Gelombang mekanik adalah suatu gangguan yang berjalan melalui beberapa material atau zat yang dinamakan medium untuk gelombang itu. Gelombang.
Science Center Universitas Brawijaya
Konsep dan Prinsip Gejala Gelombang
Akademi Farmasi Hang Tuah
MULTIMEDIA PEMBELAJARAN INTERAKTIF FISIKA KELAS XII SEMESTER 1
Matakuliah : D0684 – FISIKA I
SIFAT-SIFAT GELOMBANG
GELOMBANG
Oleh Dr. Nugroho Susanto, SKM, M.Kes
GELOMBANG BUNYI PERTEMUAN 03 (OFC)
Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL.
Pertemuan XI GELOMBANG DAN BUNYI.
GETARAN, GELOMBANG DAN BUNYI
RAMBATAN GELOMBANG PERTEMUAN 02
GELOMBANG DAN BUNYI Geloombang
Gelombang Bunyi Bunyi merupakan getaran di dalam medium elastis pada frekuensi dan intensitas yang dapat didengar oleh telinga manusia. Tiga syarat agar.
STKIP NURUL HUDA SUKARAJA FISIKA DASAR II OLEH: THOHA FIRDAUS, M.PD.SI
Transcript presentasi:

GELOMBANG Pertemuan 11-12 Mata kuliah : K0014 – FISIKA INDUSTRI Tahun : 2010 GELOMBANG Pertemuan 11-12

Gelombang adalah rambatan gangguan atau energi dalam suatu medium. 1. Macam-Macam Gelombang : Berdasarkan sumber dan medium tempat gelombang merambat (1) Gelombang Mekanik : Berhubungan dengan energi mekanik, dan hanya merambat dalam medium elastis Contoh: gelombang bunyi, gelombang pada tali,gelombang pada permukaan air 3 Bina Nusantara

(2) Gelombang Elektromagnetik Berhubungan dengan medan listrik dan medan magnet dan tidak memerlukan medium dalam perambatannya (dapat merampat di ruang hampa/vakum) . contoh : gelombang radio, cahaya. Berdasarkan arah getaran medium (1) Gelombang Transversal : Arah getaran medium yang mengalami gangguan adalah tegak lurus terhadap arah rambatan. (2) Gelombang Longitudinal : Arah getaran medium yang mengalami gangguan adalah searah dengan arah rambatan gelombang. 4 Bina Nusantara

2. Parameter Gelombang : (1) Amplitudo = Ym ( = A ) : simpangan maksimum (2) Panjang gelombang (  ) : Jarak antara dua titik yang berbeda fasa 2 π (3) Periode/ waktu getar = T : Waktu untuk 1 getaran (4) f = Frekuensi Gelombang ; Banyaknya geteran =1/T untuk satu satuan waktu (5) Kecepatan rambat Gelombang = V , V =  f (6) k = Bilangan gelombang : Banyaknya gelombang persatuan panjang (7) Frekuensi sudut =  = 2 f (8) Sudut fase gelombang =  Bina Nusantara

dimana : Y = f(X-Vt) : gelombang menjalar ke kanan 3. Persamaan Gelombang Gerak gelombang merupakan gabungan dari : rambatan gangguan ( rambatan gelombang) dan gerakan ( getaran ) medium / gelombang. Gerakan/getaran medium dapat dinyatakan sebagai : Y(x,t) = f( X  Vt ) dimana : Y = f(X-Vt) : gelombang menjalar ke kanan Y = f(X+Vt): gelombang menjalar ke kiri Persamaan gelombang, yang menyatakan persamaan gerakan (getaran) medium, adalah ( Pers. Differensial gelombang ) Bina Nusantara

Y = Ym Sin ( kx-ωt + ) (persamaan gelombang) Solusi dari persamaan differensial tersebut , untuk gelombang merambat ke kanan, adalah : Y = Ym Sin ( kx-ωt + ) (persamaan gelombang) Ym = amplitudo ( simpangan maksimum) k = 2π / λ ω = 2π f  = konstanta fasa Ym dan  ditentukan dari keadaan awal Bina Nusantara

4. Kecepatan Rambat Gelombang (1) Gelombang transversal pada tali :  = rapat massa tali persatuan panjang F = gaya (tegangan ) pada tali (2) Gelombang Longitudinal dalam Zat Alir B = Bulk modulus ρ = rapat massa persatuan volume Bina Nusantara

(3) Gelombang Longitudinal di udara : Pada medium udara (gas) ; B = γ P0 γ = konstanta kalor jenis gas P0 = tekanan dalam keadaan seimbang (4) Gelombang longitudinal Pada Medium Padat - Benda berbentuk batang Y = Modulus Young - Benda berbentuk volume G = modulus geser Bina Nusantara

(5) Gelombang Transversal (shear wave ) Pada Medium Padat Madium cair dan gas tidak dapat menahan gaya tangensial, sehingga modulus geser G = 0 , maka gelombang teransversal tidak dapat merambat dalam medium cair atau gas . Bina Nusantara

5. Energi Yang Dibawa Gelombang Untuk gelombang berbentuk : Gelombang dalam perambatannya membawa energi. Untuk gelombang berbentuk : y = ym sin ( kx - t ) Daya : P = ym2 k  F cos2 ( kx - t ) Medium berdimensi tiga , daya rata-rata : P = 2 2 ym2 f2  AV  = rapat massa persatuan volume Intensitas gelombang merupakan : jumlah energi yang dipindahkan persatuan luas persatuan waktu, atau daya persatuan luas: I = P / A A = luas penampang Bina Nusantara

6. Superposisi Gelombang Dua atau lebih gelombang yang menjalar dalam suatu medium pada tempat dan waktu yang sama, maka gangguan total pada medium adalah jumlah dari masing-masing gelombang YT (X,t) = Y1(X,t) + Y2(X,t) + Y3(X,t) Untuk 2 gelombang Sinus menjalar dalam arah dan kecepatan yang sama : (1) Frekuensi dan amplitudo sama, fase berbeda Y1 = Ym Sin (kX- t + 1 ) Y2 = Ym Sin (kX- t + 2 ) Y = Y1 + Y2 = Ym Sin ( kX- t + 1) + YmSin (kX- t+ 2) = 2 Ym Cos {(1- 2)/2} Sin {kX- t +(1 + 2)/2} Bina Nusantara

(2) Frekuensi sama, fase dan amplitudo berbeda Y1 = A1 Cos (kX- t + 01 ) Y2 = A2 Cos (kX- t + 02 ) YR = ARCos(kX- t +0R) AR dan 0R dihitung dari diagram Fasor AR dan 0R tidak bergantung pada X dan t , maka sudut fasa dari diagram fasor dapat digunakan hanya tetapan fasa Y2 YR A2 AR R 2 Y1 A1 1 Bina Nusantara

Besar AR dan 0R dapat dihitung dengan persamaan berikut: Bina Nusantara

Gelombang Berdiri dan Resonansi Gelombang berdiri (stasioner ) dihasilkan oleh superposisi antara gelombang datang dengan gelombang pantul. Gelombang datang : yd = ym sin ( t – kX ) Gelombang pantul : yp = ym sin (t + kX + π ) y = yd + yp = 2 ym [ sin ( ωt - kx ) - sin ( ω t + kx) y = - 2 ym [ sin kx ] cos ω t Posisisi puncak gelombang tak berubah terhadap kedudukan (x) , maka disebut gelombang stationer . - Titik-titik dengan simpangan besar disebut titik perut (anti node – AN ) Bina Nusantara

- Amplitudo gelombang stationer = 2ym sin (kX) - Titik-titik dengan simpangan nol disebut titik simpul (node-N) - Jarak antara dua titik simpul berdekatan = jarak antara dua titik perut berdekatan = λ /2 - Amplitudo gelombang stationer = 2ym sin (kX) Amplitudo ini akan maksimum bila : sin (kX) = ± 1 yaitu untuk : kX = π/2 , 3 π /2 , 5 π/2 , ….. atau : X = λ/2 , 2λ/2 , 3λ/2 , 5λ/2 , … Bina Nusantara

Getaran Tali Yang Ujung-ujungnya Terikat Untuk keadaan resonansi ( amplitudo gelombang berdiri lebih besar dari amplitudo gelombang datang ), kedua ujung terikat merupakan titik-titik simpul, maka panjang tali (L) akan merupakan : L = λ/2 , 2λ/2 , 3λ/2 , 5λ/2 , … Atau : λ = 2 L , 2 L / 2 , 2 L / 3 , 2 L / 5 , ... Sehingga frekuensi resonansi (natural frekuensi) adalah : f = V/2L , 2V/2L , 3V/2L , 4V/2L , … Bina Nusantara

Deret harmamoni dari tali (dawai) yang ke dua ujungnya tertambat adalah : Harmoni pertama : f 1 = V/2L Harmoni ke dua : f 2 = 2V/2L = 2 f 1 Harmoni ke tiga : f 3 = 3V/2L = 3 f 1 … dst Bina Nusantara

Gelombang diam tegak yang dihasilkan oleh Inteferensi Pipa Organa Gelombang diam tegak yang dihasilkan oleh Inteferensi antara gelombang datang dan gelombang pantul dalam suatu ruangan tertutup . Pipa Organa Terbuka Untuk keadaan resonansi , Ujung pipa terbuka akan merupakan titik perut , atau panjang pipa ( L ) sama dengan : L = λ/2 , 2λ/2 , 3λ/2 , ….. dst atau : λ = 2L , 2L/2 , 3L/2 , … dst sehingga frekuensi resonansinya : f n = n V / 2 L f1 = V/ 2L ; f2 = 2V/ 2L = 2 f1 , …dst Bina Nusantara

Pipa organa tertutup Ujung pipa organa tertutup merupakan titik simpul. Frekuensi resonansinya : fn = (2n - 1) V/ 4L ; n = 1 , 2 , 3 , … Harmoni pertama f1 (nada dasar) : f1 = V/4L Harmoni ke dua f2 : f2 = 3V/ 4L = 3 f 1 Harmoni ke tiga f3 : f3 = 5V/ 4L = 5 f1 Pada pipa organa tertutup hanya terdapat harmoni ganjil Bina Nusantara

Bunyi merambat di udara sebagai gelombang mekanik longitudinal. 6. Gelombang Bunyi Bunyi merambat di udara sebagai gelombang mekanik longitudinal. Berdasarkan frekuensinya , gelombang bunyi dapat dibedakan atas : Gelombang Bunyi dapat didengar : 20- 20.000 Hz Gelombang Bunyi ultrasonik : > 20.000 Hz. Gelombang infrasonik : < 20 Hz. Kecepatan rambat gelombang bunyi di udara adalah : V = √ ( γ P0/ρ0) γ = konstanta kalor jenis gas P0 = tekanan dalam keadaan seimbang ρ0 = rapat massa udara/gas Bina Nusantara

7. Intensitas Gelombang Bunyi Intensitas merupakan jumlah rata-rata energi yang dibawa per Satuan waktu oleh gelombang per satuan luas permukaan yang tegak lurus pada arah rambatan ( daya persatuan luas ) . I = P / A P = daya ( watt) A = luasan (m2) - Tingkat (level) Intensitas ( ) : Tingkat intensitas dinyatakan dalam decibel (db)  = 10 log ( I / I0) db , I0 = 10-12 watt / m2 = ambang pendengaran (intensitas bunyi terendah yang dapat didengar telinga). Bina Nusantara

- Intensitas gelombang sferis Gelombang yang menyebar ( merambat ) ke segala arah dengan kecepatan yang sama ( pada medium yang sama) , perbandingan intensitas pada dua titik yang berjarak R1 dan R2 dari sumber adalah : Bina Nusantara

Hubungan Amplitudo Simpangan dan Amplitudo Tekan Gelombang bunyi dapat dinyatakan sebagai : Gelombang Simpangan atau Gelombang Tekanan Persamaan Gelombang : Y = Ym Cos ( kX - t) ( gel. Simpangan ) Dari ; Dan B = c2  B = Bulk modulus , V = volume , A = luas penampang c = kecepatan rambat gelombang ,  = rapat massa persatuan volume Bina Nusantara

P = k  c2 Ym Sin ( kX - t) ( gel. tekanan ) Maka : P = k  c2 Ym Sin ( kX - t) ( gel. tekanan ) Atau : P = Pm Sin ( kX - t) Dengan : Pm = k  c2 Ym Pm = amplitudo tekanan Ym = amplitudo simpangan -Hubungan Amplitudo Tekanan dan Intensitas I = Bina Nusantara

fS = frekuensi dari sumber 8. Efek Doppler Sewaktu sumber bunyi dan atau pendengar bergerak relatif satu terhadap yang lainnya, pendengar akan merasakan adanya perubahan frekuensi gelombang bunyi yang didengarnya. Dimana bertambah besar jika sumber dan atau pendengar relatif mendekat, dan berkurang bila sumber dan atau pendengar relatif menjauh. Frekuensi yang didengar / diamati oleh pendengar akibat adanya gerak relatif antara sumber dan pendengar adalah : fP = frekuensi yang diamati oleh pendengar fS = frekuensi dari sumber Bina Nusantara

VG = kecepatan rambat gelombang di udara VP = kecepatan pendengar = positif, bila pendengar mendekati sumber = negatif, bila pendengar menjauhi sumber VS = kecepatan sumber = positif , bila sumber menjauhi pendengar = negatif , bila sumber mendekati pendengar Bina Nusantara