Klik Pilihan Anda Peluang Kejadian Menu Ruang sampel dan kejadian

Slides:



Advertisements
Presentasi serupa
Untuk Kelas XI SMA IPA Oleh M. Husni Mubarok
Advertisements

 P E L U A N G Sulihin Mustafa SMA 3 Makassar
Statistika Industri Esti Widowati,S.Si.,M.P Semester Genap 2011/2012
Peubah Acak.
 P E L U A N G Faaizah Muh. Yusuf Nim
PELUANG Teori Peluang.
SALBATRIL Materi P E L U A N G Belajar Individu Oleh :
Peluang.
PELUANG SUATU KEJADIAN
PELUANG Ruang Sampel dan Kejadian.
STATISTIKA Pertemuan 5 Oleh Ahmad ansar.
KELOMPOK III Nama Anggota : Maulida Fadzilatun N
KEJADIAN dan PELUANG SUATU KEJADIAN
STATISTIKA Pertemuan 3 Oleh Ahmad ansar.
B. MENENTUKAAN RUANG SAMPEL SUATU PERCOBAAN
Media Pembelajaran Matematika
SOAL- SOAL LATIHAN DAN JAWABAN PELUANG.
Peluang (bag3) HADI SUNARTO, S.Pd
PELUANG Alfika Fauzan Nabila Saadah Boediono Nur Fajriah Julianti Syukri Yoga Bhakti Utomo XI IPA 5.
Bab I konsep-konsep dasar probabilitas
PELUANG PERCOBAAN, RUANG SAMPEL DAN TITIK SAMPEL KEJADIAN
PELUANG.
TEORI PELUANG Inne Novita M.Si.
PELUANG Teori Peluang.
KEJADIAN dan PELUANG SUATU KEJADIAN
PELUANG SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN SILIWANGI – MATEMATIKA 2014.
PELUANG Klik Tombol start untuk mulai belajar.
KONSEP DASAR PROBABILITAS
Didin Astriani Prasetyowati, M.Stat
STATISTIKA PROBABILITAS
KONSEP DASAR PROBABILITAS
Peluang suatu kejadian
TEORI PELUANG Inne Novita M.Si.
KONSEP DASAR PROBABILITAS
Teori Peluang Statistik dan Probabilitas
Klik Pilihan Anda Peluang Kejadian Menu By IBNU FAJAR,S.Pd
PELUANG, PERMUTASI, KOMBINASI
Peluang suatu kejadian
Peluang
 P E L U A N G Sulihin Mustafa SMA 3 Makassar
5.
Peluang suatu Kejadian lanjutan
Program ini dibuat 4 April 2007 SKKK Jayapura
Contoh 2 : Jika Pelantunan sebuath mata uang logam rupiah sebanyak 1000 kali menghasilkan 529 ‘angka rupiah’, frekuensi relatif ‘angka.
PELUANG Peluang Kejadian Frekuensi Harapan Peluang Komplemen Kejadian
Kaidah Pencacahan ~ Aturan pengisian tempat yang tersedia
PELUANG Teori Peluang.
Matematika SMK Peluang Kelas/Semester: II/2 Persiapan Ujian Nasional.
PELUANG Choirudin, M.Pd Klik Tombol start untuk mulai belajar.
MATAKULIAH MATEMATIKA [Pertemuan 2]
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
Peluang.
Assalamu’alaikum Wr. Wb.
Multi Media Power Point
PELUANG SUATU KEJADIAN
STATISTIKA DAN PROBABILITAS
PELUANG.
Peluang Diskrit Achmad Arwan, S.Kom.
PELUANG.
PELUANG 2. PENGERTIAN KEJADIAN DAN FREKUENSI RELATIF (PELUANG EMPIRIK)
ASSALAMUALAIKUM WR. WB. SELAMAT SIANG ^^ SEMOGA SEHAT SELALU
The Big Presentation of Kelompok 3  Gressya Yola Perbina T.  Maryati  Sukarno Setia Putra.
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
BAB 2 Peluang.
Pengantar Probabilitas
KONSEP DASAR PROBABILITAS
Sifat – sifat probabilitas kejadian A
Kejadian majemuk adalah kejadian yang diperoleh dari kejadian- kejadian sederhana yang dihubungkan kata dan atau kata atau. Untuk itu perlu diteliti.
1 PROBABILITAS Himawan Arif S STIE Bank BPD Jateng Sesi 2 & 3.
Transcript presentasi:

Klik Pilihan Anda Peluang Kejadian Menu Ruang sampel dan kejadian Peluang suatu kejadian Frekuensi harapan suatu kejadian Klik Pilihan Anda Kejadian Majemuk dan Komplemen Menu Peluang Saling Lepas Peluang Saling Bebas Latihan Soal

Ruang Sampel dan Kejadian Perhatikan sekeping mata uang logam dengan sisi-sisi ANGKA dan GAMBAR 200 RUPIAH Bank Indonesia 2005 200 RUPIAH Bank Indonesia 2005 Sisi Gambar (G) Sisi Angka (A) Maka : Ruang Sampel (S) = { A , G } Titik Sampel = A dan G, maka n(S) = 2 Kejadian = 1. Kejadian muncul sisi Angka 2. Kejadian muncul sisi Gambar

Peluang suatu Kejadian Jika S adalah ruang sampel dengan banyaknya anggota = n(S) dan A merupakan suatu kejadian dengan banyaknya anggota = n(A), maka peluang kejadian A adalah: P(A) = n(A)/n(S) Kisaran nilai peluang P(A) adalah: 0  P(A)  1 P(A) = 1 disebut kejadian pasti P(A) = 0 disebut kejadian mustahil Contoh Pada pelemparan sebuah dadu, tentukan peluang munculnya sisi berangka ganjil ! Jawab: Ruang sampel S = {1, 2, 3, 4, 5, 6}  n(S) = 6 Sisi berangka ganjil = {1, 3, 5}  n(A) = 3 sehingga P(A) = 3/6 = 1/2

Frekuensi Harapan Suatu Kejadian Jika pada percobaan A dilakukan n kali, maka frekuensi harapan ditulis : Fh = n x P (A) Contoh : Pada percobaan pelemparan 3 mata uang logam sekaligus sebanyak 240 kali. Tentukan frekuensi harapan munculnya dua gambar dan satu angka Jawab : S = { AAA, AAG, AGA, GAA, AGG, GAG, GGA, GGG } → n (S) = 8 A = { AGG, GAG, GGA } → n (A) = 3 Fh(A) = n x P (A) = 240 x 3/8 = 90 Kali

Kejadian Majemuk dan Peluang Komplemen Kejadian Majemuk : Dua atau lebih kejadian yang dioperasikan sehingga membentuk kejadian baru Suatu kejadian E dan kejadian komplemennya E’ memenuhi persamaan : P(E) + P(E’) = 1 atau P(E’) = 1 – P(E) Contoh: Dari seperangkat kartu remi (bridge) diambil secara acak satu lembar kartu. Tentukan peluang terambilnya kartu bukan As ! Jawab: banyaknya kartu = n(S) = 52 banyaknya kartu As = n(E) = 4 → P(E) = 4/52 = 1/13 Peluang bukan As = P(E’) = 1 – P(E) = 1 – 1/13 = 12/13

Peluang Saling Lepas Penjumlahan Peluang: Dua kejadian A dan B saling lepas jika tidak ada satupun elemen A sama dengan elemen B. Untuk dua kejadian saling lepas, peluang salah satu A atau B terjadi, ditulis: P(A  B), P(A  B) = P(A) + P(B) Jika A dan B tidak saling lepas maka P(A  B) = P(A) + P(B) – P(A  B)

Contoh Peluang Kejadian Saling Lepas Sebuah dadu merah dan sebuah dadu putih dilempar bersamaan satu kali, tentukan peluang munculnya mata dadu berjumlah 3 atau 10 ! Jawab: Perhatikan tabel berikut ini! Kejadian mata dadu berjumlah 3 (warna kuning) A = {(1,2), (2,1)}  n(A) =2 Kejadian mata dadu berjumlah 10 (warna biru) B = {(6,4), (5,5), (4,6)}  n(B) = 3 A dan B tidak memiliki satupun Elemen yg sama, sehingga: P(A  B) = P(A) + P( B) = 2/36 + 3/36 = 5/36

Contoh Peluang Kejadian Tidak Saling Lepas Sebuah kartu diambil secara acak dari satu set kartu remi. Tentukan peluang bahwa yang terambil adalah kartu hati atau kartu bergambar (kartu King, Queen, dan Jack) Jawab: Banyaknya kartu remi = n(S) = 52 Banyaknya kartu hati = n(A) = 13 Banyaknya kartu bergambar = n(B) = 3x4 = 12 Kartu hati dan kartu bergambar dapat terjadi bersamaan yaitu kartu King hati, Queen hati, dan Jack hati), sehingga A dan B tidak saling lepas  n(A  B) = 3 Peluang terambil kartu hati atau bergambar adalah : P(A  B) = P(A) + P( B) - P(A  B) = 13/52 + 12/52 – 3/52 = 22/52 = 11/26

Peluang Saling Bebas P(A  B) = P(A) x P(B) Dua kejadian A dan B saling bebas, jika munculnya kejadian A tidak mempengaruhi peluang munculnya kejadian B. Untuk A dan B saling bebas, peluang bahwa A dan B terjadi bersamaan adalah: P(A  B) = P(A) x P(B) Jika munculnya A mempengaruhi peluang munculnya kejadian B atau sebaliknya, A dan B adalah kejadian bersyarat, sehingga: P(A  B) = P(A) x P(B/A) P(A  B) = P(B) x P(A/B)

Contoh: Peluang Kejadian Saling Bebas Pada percobaan pelemparan dua buah dadu, tentukan peluang munculnya angka genap pada dadu pertama dan angka ganjil prima pada dadu kedua Jawab: Mis. A = kejadian munculnya angka genap pada dadu I = {2, 4, 6}, maka P(A) = 3/6 B = kejadian munculnya angka ganjil prima pada dadu II = {3, 5}, maka P(B) = 2/6 Karena kejadian A tidak mempengaruhi kejadian B, maka keduanya disebut kejadian bebas, sehingga Peluang munculnya kejadian A dan B adalah: P(A ∩ B) = P(A) x P(B) = 3/6 x 2/6 = 1/6

Contoh Peluang Kejadian Bersyarat Sebuah kotak berisi 5 bola merah dan 4 bola biru. Jika diambil 2 bola satu persatu tanpa pengembalian, tentukan peluang terambil bola merah pada pengambilan pertama dan bola biru pada pengambilan kedua. Jawab Pada pengambilan pertama tersedia 5 bola merah dari 9 bola sehingga P(M) = 5/9. Karena tidak dikembalikan, maka pengambilan kedua jumlah bola yang tersedia sisa 8, sehingga peluang terambilnya bola biru dengan syarat bola merah telah terambil pada pengambilan pertama adalah P(B/M) = 4/8 Jadi, peluang terambilnya bola merah pada pengambilan pertama dan biru pada pengambilan kedua adalah: P(M  B) = P(M) x P(B/M) = 5/9 x 4/8 = 5/18

www.themegallery.com Latihan 1 Pada Percobaan pelemparan dua buah dadu bersama-samasebanyak sepuluh kali. Frekuensi harapan munculnya mata dadu berjumlah sepuluh adalah …. a. 3/36 b. 12/36 c. 15/36 d. 30/36 e. 48/36 Company Logo

www.themegallery.com Latihan 2 Dua buah dadu dilempar bersama-sama. Peluang munculnya mata dadu berjumlah sembilan atau sepuluh adalah …. a. 5/36 b. 7/36 c. 8/36 d. 9/36 e. 10/36 Company Logo

www.themegallery.com Latihan 3 Sebuah kotak berisi 5 bola merah, 4 bola biru, dan 3 bola kuning. Dari dalam kotak diambil 3 bola sekaligus secara acak. Peluang terambil 2 bola merah dan 1 bola merah adalah …. a. 1/10 b. 5/36 c. 1/6 d. 2/11 e. 4/11 Company Logo

JAWABAN ANDA BENAR Silakan lanjutkan soal berikutnya ….

JAWABAN ANDA BENAR Silakan lanjutkan soal berikutnya ….

JAWABAN ANDA BENAR Silakan lanjutkan soal berikutnya ….

JAWABAN ANDA SALAH Silakan coba lagiii …..

JAWABAN ANDA SALAH Silakan coba lagiii …..

JAWABAN ANDA SALAH Silakan coba lagiii …..

Ibnu Fajar,S.Pd – SMA Negeri 1 Pagar Alam TERIMA KASIH Ibnu Fajar,S.Pd – SMA Negeri 1 Pagar Alam