MAGNETIC FIELD AND ELEKTROMAGNETIC INDUCTION

Slides:



Advertisements
Presentasi serupa
Cartesian Coordinate System
Advertisements

PHYSICS AND SYSTEM UNITS AMOUNT
Physics Study Program Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung FI-1201 Fisika Dasar IIA Kuliah-09 Hukum Biot-Savart PHYSI.
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
Rumus-rumus ini masihkah anda ingat?
Roesfiansjah Rasjidin Program Studi Teknik Industri Fakultas Teknik – Univ. Esa Unggul.
GERAK LURUS.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Hukum Ampere.
Medan Listrik (Electric fields)
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
TRANSPORT OF IONS IN SOLUTION
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
Masalah Transportasi II (Transportation Problem II)
Bab 12 Gelombang Elektromagnetik
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
Accuracy is how close a measured value is to the actual (true) value. Precision is how close the measured values are to each other. Keakuratan darisistempengukuranadalahderajatkedekatandaripeng.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
A. Magnetic Field 1. Magnetic Field Around Electric Current In Oersted's experiment, a compass is placed directly over a horizontal wire (here viewed.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
1 CTC 450 ► Bernoulli’s Equation ► EGL/HGL. Bernoulli’s Equation 2
Pipa organa terbuka Pipa organa tertutup Pelayangan bunyi
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
HUKUM AMPERE.
MEDAN MAGNET DAN INDUKSI ELEKTROMAGNETIK
GEOMETRI SUDUT DAN BIDANG.
CLASS X SEMESTER 2 SMKN 7 BANDUNG
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Creatif by : Nurlia Enda
Thermochemistry For Technological SMK and Agriculture
ILMU FISIKA Oleh : Mukhtar Effendi
COMPOUND NOMENCLATURE AND EQUATION OF REACTION
MAGNETIC FIELD AND ELEKTROMAGNETIC INDUCTION
Mole Concept For Technological And Agriculture
Work and Energy (Kerja dan Energi)
FISIKA DASAR Pertemuan ke-3 Mukhtar Effendi.
TRANSPORT OF IONS IN SOLUTION
CLASS X SEMESTER 2 SMKN 7 BANDUNG
VECTOR VECTOR IN PLANE.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
Kelompok 6 Nurlia Enda Hariza NiMade Mahas
Fisika Dasar II (PAF 08112) Mukhtar Effendi.
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
Pipa organa terbuka Pipa organa tertutup Pelayangan bunyi
MEDAN MAGNET DAN INDUKSI ELEKTROMAGNETIK
Master data Management
Coulomb’s law & Electric Field Intensity
RANGKAIAN LISTRIK 1.
Bab 12 Gelombang Elektromagnetik
ELASTIC PROPERTIS OF MATERIAL
KAPASITOR DAN INDUKTOR. Capacitors A basic capacitor has two parallel plates separated by an insulating material A capacitor stores an electrical charge.
Physics Quantities Vector Quanties Scalar Quantities Consist of.
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
FORCES. A force is an influence on a system or object which, acting alone, will cause the motion of the system or object to change. If a system or object.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Hukum Konservasi Muatan dan energi.
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Poynting’s Theorem Beberapa Contoh.
Kelompok 13 Nama Anggota : Sigit Dwi Prianto Praditya F Marliyana.
Force System Resultants 4 Engineering Mechanics: Statics in SI Units, 12e Copyright © 2010 Pearson Education South Asia Pte Ltd.
Transcript presentasi:

MAGNETIC FIELD AND ELEKTROMAGNETIC INDUCTION S N PHYSICS SMK PERGURUAN CIKINI

Isi dengan Judul Halaman Terkait MAGNETIC FIELD Magnetic field is usually represented by the imaginary lines called magnetic field lines or magnetic force lines. These magnetic field lines have direction that come out from the north pole and entering south pole of magnet as shown in the following figure. S N S N Hal.: 2 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait MAGNETIC FIELD S N Press here, Please! This figure shows how the magnetic field of a bar magnet can be traced with the aid of a compass. Hal.: 3 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait MAGNETIC FIELD There are three rules of magnetic field lines, these are : a. The magnetic field lines never cut (cross) each other. b. The magnetic field lines always come out from the north pole and entering the south pole and form closed curves. c. If the magnetic field lines at a certain location are dense, then the magnetic field at that location is strong, vice versa if the magnetic field lines at a certain location are wide apart, then the magnetic field at that location is weak. Hal.: 4 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait MAGNETIC INDUCTION Basically, the source of magnetic field are not only shaped of permanent magnet, but can also in the form of electromagnet, that is, the magnet produced by electric current or moving electric charge. S U S U S U The result of Oersted’s experiment Hal.: 5 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait BIOT-SAVART’S LAW Note: B = magnetic induction (T) mo = vacum permeability (4p x 107 Wb/Am) I = electric current (A) r = radius of the circular path (m) P Hal.: 6 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait BIOT-SAVART’S LAW The magnetic induction at point O can be determined by the following equation: O r If there are N windings of the circular wire, then that equa-tion become. Note: N = the widing number r = the radius of wire ( m ) Hal.: 7 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait BIOT-SAVART’S LAW Meanwhile, the magnetic induction at point S as follows: S O r a q P Note: a = the distance of point p with point s ( m ) r = the radius of wire ( m ) q = the angle of SP with SO Hal.: 8 Isi dengan Judul Halaman Terkait

MAGNETIC INDUCTION IN SOLENOID Source: www.societyofrobots.com The magnetic induction in the middle of solenoid can be determined by the following equation: The magnetic induction at that out of both ends as follows. Note: i = electric current ( A ) l = length of solenoid ( m ) N = winding number Hal.: 9 Isi dengan Judul Halaman Terkait

Magnetic induction on the toroid The magnetic induction on the toroid can be can be determined by the equation as follows: r B Note: r = radius of toroid ( m ) I = electric current ( A ) N = winding number Source: http://rocky.digikey.com Hal.: 10 Isi dengan Judul Halaman Terkait

THE MAGNETIC INDUCTION Example What is the magnetic induction at distance of 5 cm from the center of straight wire carrying 3 A current? Solution mo = 4 p x 107 Tm/A I = 3 A r = 5 cm = 0.05 m B = ….? Thus, the magnetic induction produced is 1.2 x 105 T. Hal.: 11 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE Lorentz force in the straight wire carrying electric current If a wire with length of l flown by electric current I exists in a magnetic field B, then the wire will undergo Lorentz force or magnetic force which its direction can be determined by the right-hand rule. S N Hal.: 12 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE Source :http://ima.dada.net/image/medium/4080766.jpg Note: FL= lorentz force (N) B = magnetic induction (T)  = the angel between B and I I = electric current (A) l = length of wire (m) The thumb direction represents the direction of electric current, the fingers direction represents the directions of magnetic induction, and the palm side direction represents the direction of Lorentz force. Hal.: 13 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE Lorentz force in two parallel wires carrying electric current r X F1 F2 B2 B1 I1 I2 Note: r = distance of both wires (m) I = electric current (A) l = length of wire (m) Hal.: 14 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE Lorentz force on moving electric charges If an electric charge is moving in the magnetic field, then it will undergo Lorentz force which its magnitude can be determined by the following equation: + X X X v FL B - Positive charge Negative charge Note : B = magnetic induction (T)  = the angel between B and v q = electric charges (C) v = particle’s speed (m/s) Hal.: 15 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE If the direction of v is parallel to the direction of magnetic induction B, then the Lorentz force on the charged particle is zero, so that it moves linearly, yet if the direction of v is perpendicular to B, then the Lorentz force on the charged particle is FL=Bqv and follows a circular path with radius R. Thus, the magnitude of Lorentz force FL is equal to the centripetal force Fs. Therefore, Note: R = radius of path (m) m = mass of particle (kg) q = anguler speed of particle (rad/s) Hal.: 16 Isi dengan Judul Halaman Terkait

Moment of lorentz force Isi dengan Judul Halaman Terkait When a conductor wire shaped of the coil with cross sectional area of A is flown by electric current in magnetic field, then the coil will undergo moment of lorentz force. Note:  = moment of force (Nm) I = electric current in the coil (A) B = magnetic induction (T) A = area of coil (m2)  = the angle between B with the coil plane Hal.: 17 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait LORENTZ FORCE Example A wire with 2 meters in length is flown by electric current 50 A. if the wire undergoes the magnetic force of 1.5 N in the magnetic field which is homogeneous with B = 0.03 T, then determine the angle between B and I? Solution FL = 1.5 N B = 0.03 T I = 50 A l = 2 m a = ….? Thus, the angle between B and I is 30o. Hal.: 18 Isi dengan Judul Halaman Terkait

THE MAGNETISM CHARACTERISTICS OF MATERIAL Based on how the materials react to a magnetic field, then magnetic materials can be distinguished into diamagnetic materials, paramagnetic materials, and ferromagnetic materials. Diamagnetic materials are those that are replled slightly by magnetic field, the example are gold, cooper, etc. Paramagnetic materials are those that attracted with very low force in the magnetic field, the example are alumunium, magnesium, etc. Ferromagnetic materials are those that attracted strongly in magnetic field. Hal.: 19 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait ELECTROMAGNETIC INDUCTION Magnetic flux a N B A Note:  = magnetic flux (Wb) B = magnetic induction (T) A = surface area (m2)  = the angle between B with the plane’s normal line Hal.: 20 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait ELECTROMAGNETIC INDUCTION Faraday-Lenz’s law Source: www.radioelectronicschool.net Note: eind = induction electromotive force (volt) D = the magnetic flux changing (Wb) N = winding number Dt = the time interval (s) Hal.: 21 Isi dengan Judul Halaman Terkait

Electromagnetic induction Example A coil has 100 windings and in 0.01 s emerges a magnetic flux change of 10-4 Wb, calculate the induction electromotive force at the coil ends? Solution N = 100 df = 10-4 Wb dt = 0.01 s eind = …..? Thus, the induction electromotive force at the coil ends is 1 volt. Hal.: 22 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait ELECTRIC GENERATOR Source: http://members.shaw.ca/len92/acdc_inside_generator.gif Note: N = winding number B = magnetic induction (T) A = area of coil plane (m2) = anguler velocity (rad/s) t = time (s) Hal.: 23 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait ELECTRIC GENERATOR The scheme of AC generator 1 1. Slip ring 2. Loop 3. External circuit 4. Brushes 5. Rotor luar 2 3 4 5 Source: http://www.ncert.nic.in/html Hal.: 24 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait ELECTRIC GENERATOR The scheme of DC generator 1 1. Sikat 2. Armature 3. Comutator 2 3 Hal.: 25 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait INDUCTANCE The value of self-induction electromagnetive force occurs in the circuit or coil depends on the rate change of the current. Note: eind = self-induction electromotive force (volt) DI = the electric current changing (A) L = inductance (H) Dt = the time interval (s) Hal.: 26 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait INDUCTANCE Example A coil has inductance of 5 H and a resistor has resistance of 20 W. Both are set in the voltage source of 100 volt. Calculate the energy stored on the coil if the current reach maximum value? Solution e = 100 volt R = 20 W L = 5 H W = ….? Thus, the energy stored in the coil is 63 J Hal.: 27 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait TRANSFORMER Note: Vp = primary voltage (volt) Vs = secondary voltage (volt) Np = primary winding number Ns = secondary winding number Ip = primary electric current (A) Is = secondary electric current (A) Hal.: 28 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait TRANSFORMER Transformer efficiency Note: = transformer efficiency P1 = primary power (watt) P2 = secondary power (watt) Hal.: 29 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait EXERCISE One of a magnetic pole is moved entering a coil. The direction of induction current emerges in the coil is anti-clockwise. a. which is the pole entered? b. what is the direction of induction current if the magnetic is pulled out? 2. Explain the working principle of generators and what are the differences between alternating and direct current generators? 8 W 4 H 24 volt S 3. In such a circuit, determine the time constant of the circuit and energy stored in the inductor when the current reaches its maximum value? Hal.: 30 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait thank you Hal.: 31 Isi dengan Judul Halaman Terkait