Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran

Slides:



Advertisements
Presentasi serupa
Outline Materi Hubungan antara Comp. Vision, Grafika Komputer, Pengolahan Citra, dan Pengenalan Pola (Pattern Recognition) Domain Computer Vision Processing.
Advertisements

CS3204 Pengolahan Citra - UAS
Feature / Ciri / Object Descriptor
Features / Ciri / Deskripsi Obyek
Pengolah Citra Digital 2
Activity Diagram Shinta P.. For Bussiness Modeling, Activity diagrams describe the activities of a class. It is used for the following purposes: (Bennet.
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Dicky Faizal Alie Sistem Informasi
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Fuzzy for Image Processing
Masalah Transportasi II (Transportation Problem II)
1 Pertemuan 22 Analisis Studi Kasus 2 Matakuliah: H0204/ Rekayasa Sistem Komputer Tahun: 2005 Versi: v0 / Revisi 1.
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
1 Pertemuan 5 Deteksi Bentuk Primitif Obyek 2D Matakuliah: T0283 – Computer Vision Tahun: 2005 Versi: Revisi 1.
1 Pertemuan 11 The Manipulative part of the object data model (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 13 Algoritma Pergantian Page Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
COMPUTER GRAPHICS D10K-5C01 GK11: OpenGL Transformasi dan Interaksi Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Binary Search Tree. Sebuah node di Binary Search Tree memiliki path yang unik dari root menurut aturan ordering – Sebuah Node, mempunyai subtree kiri.
OPERATOR DAN FUNGSI MATEMATIK. Operator  Assignment operator Assignment operator (operator pengerjaan) menggunakan simbol titik dua diikuti oleh tanda.
CITRA BINER.
EIS (Executive Information Systems)
KOMUNIKASI DATA Materi Pertemuan 8.
Modul 1 PENGANTAR PENGOLAHAN CITRA
Fondasi Pemrograman & Struktur Data
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Pert. 16. Menyimak lingkungan IS/IT saat ini
Induksi Matematika.
Image Segmentation.
DAFTAR TOPIK SKRIPSI Cecilia E. Nugraheni
CLASS X SEMESTER 2 SMKN 7 BANDUNG
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
CS3204 Pengolahan Citra - UAS
Digital Image Fundamentals
GROUP 12: ARINI NUROTUL HUDA
The contents This lectures we will look at image enhancement techniques working in the spatial domain: What is image enhancement? Different kinds of image.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
BAB VIII Representasi Citra
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Image Enhancement –Spatial Filtering
Software Engineering Rekayasa Perangkat Lunak
W1. About Social Informatics
Algorithms and Programming Searching
Sumber : Cris Salomon, “Fundamental of Digital Image Processing”
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
EIS (Executive Information Systems)
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Features / Ciri / Deskripsi Obyek
Master data Management
How to Set Up AT&T on MS Outlook ATT is a multinational company headquartered in Texas. ATT services are used by many people widely across.
© Mark E. Damon - All Rights Reserved Another Presentation © All rights Reserved
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
Take a look at these photos.... Also, in case you're wondering where this hotel is, it isn't a hotel at all. It is a house! It's owned by the family of.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
HughesNet was founded in 1971 and it is headquartered in Germantown, Maryland. It is a provider of satellite-based communications services. Hughesnet.
Fix problems opening Norton  Fix problems opening Norton This problem can happen after you update Norton. To fix the matter, restart the computer. Fix.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Pemrograman berorientasi objek
Morphological processing
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
By Group 5. Once upon a time a lion was roaming in the jungle in search of a prey. Luckily, he saw a rabbit sleeping fast under a tree. He was delighted.
Transcript presentasi:

Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran COMPUTER VISION D10K-7C02 CV08: Binary Image Analysis: Moments and CCL Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran

Citra Biner Citra yang hanya mengandung 2 macam intensitas, umumnya HITAM (0) atau PUTIH (1 atau 255) Merepresentasikan Background (0) dan Objek (1) Metode Pembuatan Preprocessing: Konversi Warna ke Gray Level Thresholding: Simple Thresholding Multilevel/Adaptive Thresholding OTSU Thresholding

Representasi Citra Biner

Histogram Citra Biner

Metode Pembuatan Citra Biner Simple Thresholding

Metode Pembuatan Citra Biner Multilevel/Adaptive Thresholding

Metode Pembuatan Citra Biner OTSU Thresholding Nobuyuki Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on System, Man, and Cybernetics. SMC-9(1), 1979, Electro-Technical Laboratory, Tokyo University(2007), Tokyo, Japan http://www.codeproject.com/Articles/38319/Famous-Otsu-Thresholding-in-C

Analisis Citra Biner Image Enhancement Image Analysis Filter Morfologis (Preprocessing) Image Analysis Metode Moments Connected Component Labelling

MOMENTS

Moment Digunakan untuk mendapatkan properti geometris dari objek : Ukuran (size) Posisi (pusat objek) Orientasi (kemiringan) Formula Moment

Coba cari nilai moment ini ! Momen Ordo 0 Untuk Mencari Luas Objek Coba cari nilai moment ini ! Momen Ordo 1 Untuk Mencari Pusat Objek

Contoh Perhitungan Moment Tentukan Zeroth dan First Order Moment dari objek berikut ini:

Contoh Perhitungan Moment Zeroth Order Moment Luas objek = A =m00 13 First Order Moment Posisi Objek (x,y) m10 = x = m01 = y =

Second Order Moment Digunakan untuk mencari orientasi atau kemiringan objek

Moments Invarian Moment dapat digunakan untuk menentukan karakteristik geometric dari sebuah objek Karakteristik ini bersifat invariant Tidak berubah walau objek mengalami transformasi Translasi Dilatasi Rotasi Refleksi Tujuh nilai moment yang menunjukkan karakteristik invariant (Hu, 1961)

http://www. codeproject http://www.codeproject.com/Articles/35895/Computer-Vision-Applications-with-C-Part-II

Tugas ‘ATM’ program berikut: http://www.codeproject.com/Articles/35895/Computer-Vision-Applications-with-C-Part-II

CONNECTED COMPONENT LABELLING

Apa itu Connected Component Labeling Istilah lain connected-component analysis blob extraction region labeling blob discovery region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not segmentation. Connected-component labeling is used in computer vision to detect connected regions in binary digital images, although color images and data with higher-dimensionality can also be processed. When integrated into an image recognition system or human-computer interaction interface, connected component labeling can operate on a variety of information. Blob extraction is generally performed on the resulting binary image from a thresholding step. Blobs may be counted, filtered, and tracked.

Ilustrasi

Aplikasi: Aircraft Identification by Silhoute

Ilustrasi Cara Kerja CCL In the beginning, we have this image, we start with currentLabelCount = 1.

Ilustrasi Cara Kerja CCL Found non-background pixel

Ilustrasi Cara Kerja CCL Gets its non-background pixel neighbours

Ilustrasi Cara Kerja CCL Set the current pixel to the currentLabelCount and increment it , we also set the label's parent to itself

Ilustrasi Cara Kerja CCL on to the next pixel, this one has a neighbour which is already labeled:

Ilustrasi Cara Kerja CCL assigns the pixel's parent label to that of the neighbour

Ilustrasi Cara Kerja CCL Continue on, none of the neighbours of this pixel is labeled:

Ilustrasi Cara Kerja CCL We increment currentLabelCount and assign it to the pixel, again its parent is set to itself:

Ilustrasi Cara Kerja CCL It gets interesting here, when neighbors have different labels:

Ilustrasi Cara Kerja CCL Choose main label, i.e.: that would be the smallest label in the discovered list--> (1) Set it to be the parent of the other labels

Ilustrasi Cara Kerja CCL Continue the process. Notice the blue number in the upper right corner, that's the parent label

Algorithm CCL First pass, assigning labels

Algorithm CCL Second pass, aggregating labels

8-CCL

Tugas ‘ATM ‘ program CCL http://www.codeproject.com/Articles/336915/Connected-Component-Labeling-Algorithm

EULER NUMBER

What is Euler Number in Binary Image Euler Number = the number of objects minus the number of holes.

Ilustrasi 7 objects 3 holes Euler = 4

Ilustrasi

Ilustrasi

Ilustrasi All the circles touch so they create one object. The object contains four "holes", which are the black areas created by the touching circles. Thus the Euler number is 1 minus 4, or -3.

The Euler Number is not a good shape descriptor. About Euler Number The Euler Number is not a good shape descriptor.

Program CCL