VEKTOR Mata Kuliah : Kalkulus I Oleh : Ali Mahmudi

Slides:



Advertisements
Presentasi serupa
BAB III VEKTOR.
Advertisements

VEKTOR Mata Kuliah : Matematika Elektro Oleh : Warsun Najib
BAB 2 VEKTOR Besaran Skalar Dan Vektor
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
VEKTOR VECTOR by Fandi Susanto.
DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA
Vektor oleh : Hastuti.
Bab 4 vektor.
ALJABAR LINIER & MATRIKS
Aljabar Vektor (Perkalian vektor-lanjutan)
Program Studi Teknik Elektro, UNIVERSITAS JENDERAL SOEDIRMAN
Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
Pengantar Vektor.
VEKTOR Besaran Skalar dan Besaran Vektor
BAB 2 VEKTOR 2.1.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
ALJABAR LINIER & MATRIKS
Vektor Ruang Dimensi 2 dan Dimensi 3
Pertemuan 2 Aritmatika Vektor.
BAB V (lanjutan) VEKTOR.
Kalkulus Vektor Pertemuan 13, 14, 15, & 16
Vektor By : Meiriyama Program Studi Teknik Komputer
Matakuliah : Kalkulus II
VEKTOR.
Vektor.
VEKTOR BUDI DARMA SETIAWAN.
Aljabar Vektor (Perkalian vektor)
BESARAN, SATUAN, DIMENSI, VEKTOR
BILANGAN BULAT Bilangan Bulat Operasi Hitung pada Bilangan Bulat
MATA KULIAH MATEMATIKA LANJUT 1 [KODE/SKS : IT / 2 SKS]
VEKTOR 2.1.
(Tidak mempunyai arah)
BILANGAN BULAT.
BILANGAN BULAT.
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR VEKTOR PADA BIDANG.
P. X w A B B v v+w v+w w v v v+w w v -v v-w v v v-w -w w w
PERKALIAN VEKTOR LANJUT
PERKALIAN VEKTOR Di sini ditanyakan apa yang dimaksud dengan fisika.
BAB 2 VEKTOR Pertemuan
Kalkulus 2 Vektor Ari kusyanti.
Vektor.
VektoR.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 4 VEKTOR Home.
VEKTOR.
BESARAN DAN SISTEM SATUAN
Matakuliah : K0034-Aljabar Linear Terapan Tahun : 2007
DIFERENSIAL VEKTOR Kuliah 1.
DOT PRODUCT dan PROYEKSI ORTHOGONAL
Pertemuan 2 Aljabar Vektor (Perkalian vektor)
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
Aljabar Linier Vektor Oleh: Chaerul Anwar, MTI.
ALJABAR LINIER & MATRIKS
Satuan Pendidikan : SMA Mata Pelajaran : Fisika Kelas / Semester : X MIA / Ganjil Materi Pembelajaran : Vektor Alokasi Waktu : 1 x 120 menit.
BAB 3 VEKTOR 2.1.
Oleh : Farihul Amris A, S.Pd.
Pertemuan 2 Aritmatika Vektor.
PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS BRAWIJAYA 2010
5.
VEKTOR VECTOR by Fandi Susanto.
VEKTOR.
Pengantar Teknologi dan Aplikasi Elektromagnetik
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang
BAB 2 VEKTOR 2.1.
VEKTOR Dosen : ANDI MARIANI RAMLAN, S.Pd., M.Pd
VEKTOR.
BESARAN & VEKTOR.
PERKALIAN VEKTOR LANJUT
Vektor Indriati., ST., MKom.
Transcript presentasi:

VEKTOR Mata Kuliah : Kalkulus I Oleh : Ali Mahmudi Teknik Elektro, Institut Teknologi Nasional, Malang

1. Vektor di Ruang 2 Besaran Skalar dan Besaran Vektor Besaran skalar adalah besaran yang hanya memiliki besar (panjang/nilai) Ex: waktu, suhu, panjang, luas, volum, massa Besaran Vektor-> memiliki besar dan arah Ex: kecepatan, percepatan, gaya, momentum, medan magnet, medan listrik Notasi Vektor Ruas garis berarah yg panjang dan arahnya tertentu. Vektor dinyatakan dg huruf ū, u, u (bold), atau u (italic). Jika u menyatakan ruas garis berarah dari A ke B, maka ditulis dengan lambang u = AB Notasi u dibaca “vektor u”

Penyajian Vektor Vektor sbg pasangan bilangan u = (a,b) a : komponen mendatar, b : komponen vertikal Vektor sbg kombinasi vektor satuan i dan j u = ai + bj Panjang vektor u ditentukan oleh rumus

Kesamaan Vektor Dua buah vektor dikatakan sama besar bila besar dan arahnya sama. Misalkan u = (a,b) dan v = (c,d) Jika u = v, maka |u| = |v| arah u = arah v a=c dan b=d

Dua Vektor mempunyai besar sama, arah berbeda Dua vektor sama, a = b a b Dua Vektor mempunyai besar sama, arah berbeda a b Dua vektor arah sama, besaran beda a b Dua Vektor besar dan arah berbeda

Penjumlahan Vektor v u w = u + v Penjumlahan vektor menurut aturan segitiga dan aturan jajaran genjang Dalam bentuk pasangan bilangan sbb:

Contoh Penggunaan Penjumlahan Vektor Gambar 154 hal 404 Buku Advance Engineering Mathematic

Elemen Identitas Vektor nol ditulis 0 Vektor nol disebut elemen identitas u + 0 = 0 + u = u Jika u adalah sebarang vektor bukan nol, maka –u adalah invers aditif u yang didefinisikan sebagai vektor yang memiliki besar sama tetapi arah berlawanan. u – u = u + (-u) = 0

Pengurangan Vektor Selisih dua vektor u dan v ditulis u – v didefinisikan u + (-v) Dalam bentuk pasangan bilangan v u u w = u - v -v

Perkalian Vektor dengan Skalar mu adalah suatu vektor dg panjang m kali panjang vektor u dan searah dengan u jika m > 0, dan berlawanan arah jika m < 0. u 2u

Sifat-Sifat Operasi Vektor Komutatif  a + b = b + a Asosiatif  (a+b)+c = a+(b+c) Elemen identitas terhadap penjumlahan Sifat tertutup-> hasil penjumlahan vektor juga berupa vektor Ketidaksamaan segitiga |u+v| ≤ |u| + |v| 1u = u 0u = 0, m0 = 0. Jika mu = 0, maka m=0 atau u = 0

Sifat-Sifat Operasi Vektor (lanj.) (mn)u = m(nu) |mu| = |m||u| (-mu) = - (mu) = m (-u) Distributif : (m+n)u = mu + nu Distributif : m(u+v) = mu + mv u+(-1)u = u + (-u) = 0

Besar Vektor Hasil Penjumlahan dan Pengurangan

Menghitung Besar Vektor Hasil Penjumlahan dan Pengurangan u + v u v θ u-v v θ u

Menentukan Arah Vektor Hasil Penjumlahan dan Pengurangan u + v β α u u-v v α β u

Vektor Posisi OA = a dan OB = b adalah vektor posisi. AB = AO + OB = OB – OA = b – a X Y A B b a

Dot Product (Inner Product) Perkalian titik (dot product) a•b (dibaca a dot b) antara dua vektor a dan b merupakan perkalian antara panjang vektor dan cosinus sudut antara keduanya. Dalam bentuk komponen vektor, bila a = [a1,b1,c1] dan b = [a2,b2,c2], maka : a•b > 0 jika {γ| 0 < γ < 90o} a•b = 0 jika {γ| γ = 90o} a•b < 0 jika {γ| 90o < γ< 180o}

Vektor Ortogonal Teorema Hasil perkalian dot product antara dua vektor bukan-nol adalah nol jika dan hanya jika vektor-vektor tersebut saling tegak lurus Vektor a disebut ortogonal thd vektor b jika a•b = 0, dan vektor b juga ortogonal thd vektor a. Vektor nol 0 ortogonal terhadap semua vektor. Untuk vektor bukan-nol a•b = 0 jika dan hanya jika cos γ = 0  γ = 90o = π/2

Besar dan Arah dalam Perkalian Dot Product Besar Sudut γ dapat dihitung dgn:

Contoh Perkalian Dot Product a = [1,2,0] dan b = [3,-2,1] Hitung sudut antara dua vektor tsb

Applications of Vector Product Moment of a force |P|=1000 lb 30o 1,5 ft Find moment of force P about the center of the wheel. Vektor moment (m) tegak lurus thd bidang roda (sumbu z negatif ).

Scalar Triple Product

Scalar Triple Product Geometric representation a,b,c vektor β sudut antara (bxc) dan a h tinggi parallelogram c b x c a β h b

Referensi Advanced Engineering Mathematic, chapter 8