Bahan kuliah Matematika Diskrit

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
BAB II HIMPUNAN.
Pertemuan I-III Himpunan (set)
Dasar Logika Matematika
Waniwatining II. HIMPUNAN 1. Definisi
Himpunan Pertemuan Minggu 1.
Himpunan.
MATEMATIKA BISNIS HIMPUNAN.
Matematika Informatika 1
Bahan kuliah IF2120 Matematika Diskrit
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
BAB II HIMPUNAN.
MATEMATIKA DISKRET PERTEMUAN 2 HIMPUNAN
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
HIMPUNAN Rani Rotul Muhima.
Pertemuan ke 4.
DPH1A3-Logika Matematika
HIMPUNAN.
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
LOGIKA MATEMATIKA PERTEMUAN 1 HIMPUNAN I
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
Himpunan Fakultas Ilmu Terapan Universitas Telkom
Bahan kuliah Agribisnis study club Frogram Study Agribisnis
BAB 1 Himpunan
BAB II HIMPUNAN.
Matematika Diskrit bab 2-Himpunan
Himpunan Part 2.
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
Disusun Oleh: Novi Mega S
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
HIMPUNAN Himpunan : kumpulan benda atau objek yang didefinisikan secara jelas. Kelompok berikut yang merupakan himpunan adalah : 1. Kelompok siswa cantik.
Himpunan (Lanjutan).
HIMPUNAN.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
PENDAHULUAN : ALJABAR ABSTRAK
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Himpunan.
Heru Nugroho, S.Si., M.T. No Tlp : Semester Ganjil TA
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Logika Matematika Himpunan Sri Nurhayati.
Dasar Logika Matematika
BAB 1 Himpunan
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Bahan kuliah Matematika Diskrit Himpunan Bahan kuliah Matematika Diskrit 1

Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain. 2

Satu set huruf (besar dan kecil) 3

Cara Penyajian Himpunan Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Contoh 1. - Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}. - Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}. - C = {kucing, a, Amir, 10, paku} - R = { a, b, {a, b, c}, {a, c} } - C = {a, {a}, {{a}} } - K = { {} } - Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 } - Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}. 4

Keanggotaan x  A : x merupakan anggota himpunan A; x  A : x bukan merupakan anggota himpunan A.    Contoh 2. Misalkan: A = {1, 2, 3, 4}, R = { a, b, {a, b, c}, {a, c} } K = {{}} maka 3  A {a, b, c}  R c  R {}  K {}  R 5

Contoh 3. Bila P1 = {a, b}, P2 = { {a, b} }, P3 = {{{a, b}}}, maka P1  P2 P1  P3 P2  P3 6

Simbol-simbol Baku P = himpunan bilangan bulat positif = { 1, 2, 3, ... } N = himpunan bilangan alami (natural) = { 1, 2, ... } Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks Himpunan yang universal: semesta, disimbolkan dengan U. Contoh: Misalkan U = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari U, dengan A = {1, 3, 5}. 7

3. Notasi Pembentuk Himpunan 8

Diagram Venn Contoh 5. Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn: 9

Kardinalitas Jumlah elemen di dalam A disebut kardinal dari himpunan A. Notasi: n(A) atau A    Contoh 6. (i) B = { x | x merupakan bilangan prima lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 (ii) T = {kucing, a, Amir, 10, paku}, maka T = 5 (iii) A = {a, {a}, {{a}} }, maka A = 3 10

Himpunan kosong (null set) 11

Himpunan Bagian (Subset) 12

13

14

15

Latihan Misalkan : A = {1, 2, 3} B = {1, 2, 3, 4, 5} Tentukan semua kemungkinan himpunan C Sedemikian sehingga : A  C dan C  B yaitu : A adalah proper subset dari C dan C adalah proper subset dari B. 16

Jawaban: C harus mengandung semua elemen A = {1, 2, 3} dan sekurang-kurangnya satu elemen dari B. Dengan demikian, C = {1, 2, 3, 4} atau C = {1, 2, 3, 5}. C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B. 17

Himpunan yang Sama 18

19

Himpunan yang Ekivalen 20

Himpunan Saling Lepas 21

Himpunan Kuasa 22

Operasi Terhadap Himpunan 23

24

25

26

27

28

29

30

31

32

33

34

35

Perampatan Operasi Himpunan 36

37

Hukum-hukum Himpunan Disebut juga sifat-sifat (properties) himpunan Disebut juga hukum aljabar himpunan 38

39

Prinsip Dualitas Prinsip dualitas  dua konsep yang berbeda dapat saling dipertukarkan namun tetap memberikan jawaban yang benar.   40

41

42

43

44

45

Prinsip Inklusi-Eksklusi 46

47

48

49

Partisi 50

Himpunan Ganda (multiset) 51

52

53

Pembuktian Proposisi Perihal Himpunan 54

55

Metode ini mengilustrasikan ketimbang membuktikan fakta. Diagram Venn hanya dapat digunakan jika himpunan yang digambarkan tidak banyak jumlahnya. Metode ini mengilustrasikan ketimbang membuktikan fakta. Diagram Venn tidak dianggap sebagai metode yang valid untuk pembuktian secara formal. 56

57

58

59

60

61

62

63

64

Tipe Set dalam Bahasa Pascal 65

66

67

68

1. A = {1,2,b} B = {1,a,b}, tentukan A - B b. B – A c. A x B 2. Mhs Ganjil : Di antara bilangan bulat antara 101 – 600 (termasuk 101 dan 600 itu sendiri), berapa banyak bilangan yang tidak habis dibagi oleh 4, 5 atau 6? 2. Mhs Genap : Di antara bilangan bulat antara 101 – 600 (termasuk 101 dan 600 itu sendiri), berapa banyak bilangan yang dibagi oleh 4, 5 atau 6 tetapi tidak 5 dan 6? 3. Ganjil : ~p  (pq) Genap :(p^q)  (p  q) Apakah Preposisis tersebut mempunyai sifat yang Khas, buktikan dengan tabel Kebenaran. 69

Tugas Elearning kelas 21 Tanggal :19/10/2015 Di antara bilangan bulat antara 101 – 600 (termasuk 101 dan 600 itu sendiri), berapa banyak bilangan yang tidak habis dibagi oleh 4 atau 5 namun tidak keduanya? Apa keterbatsan dari embuktian dengan diagram venn? Berikan contoh tentang Prinsi Dualitas? Tulisan / Ketik simpan sebagai PDF dan Di UPLOAD di web FTI nama File: EL5-MD1-22-NIM-NAMA Paling lambat Jumat 25 Oktober 2015 jam 20.00 WIB