MATERI KE-1 MATEMATIKA EKONOMI I HIMPUNAN MATERI KE-1 MATEMATIKA EKONOMI I
PENGERTIAN HIMPUNAN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek. Contoh: Himpunan benda-benda langit, himpunan mahasiswa ekonomi dll Obyek-obyek yang membentuk sebuah himpunan disebut anggota atau elemen atau unsur. Contoh: - Himpunan hewan, salah satu unsur/elemennya adalah gajah - Himpunan bilangan ganjil, salah satu unsur/elemennya bilangan 3
PENYAJIAN HIMPUNAN Suatu himpunan biasanya dilambangkan dengan huruf-huruf besar (A, B, P dll). Anggota atau elemen atau unsur himpunan biasanya dinotasikan dengan huruf kecil (a, b, d) Penyajian himpunan dapat dituliskan dengan 2 cara yaitu: cara daftar dan cara kaidah Penyajian himpunan cara daftar adalah dengan mencantumkan seluruh obyek yang menjadi anggota suatu himpunan diantara kurung kurawal Contoh: Himpunan A beranggotakan bilangan bulat positif 1,2,3,4,5 maka disajikan sbb: A = {1,2,3,4,5}
Penyajian himpunan cara kaidah ialah dengan cara menyebutkan karateristik tertentu dari obyek-obyek yang menjadi anggota himpunan tersebut. Contoh: a. Himpunan B beranggotakan x sedemikian rupa sehingga x adalah bilangan genap, maka disajikan sbb: B = {x | bilangan genap} Himpunan H beranggotakan beberapa nama buah, maka disajikan sbb: H = {x | beberapa nama buah} Anggota himpunan adalah bagian dari suatu himpunan dan ditulis dengan notasi , misal b adalah anggota himpunan A maka ditulis b A. Dan sebaliknya tidak mengandung himpunan dinotasikan dengan , misal b bukan anggota himpunan A maka ditulis b A
Contoh: Jika A = {a,b,c} maka aA, bA, c A dan eA
HUBUNGAN ANTAR HIMPUNAN Setiap anggota himpunan bisa menjadi anggota himpunan yang lain. Misalnya setiap anggota himpunan A juga menjadi anggota himpunan B, maka himpunan A disebut sebagai himpunan bagian sejati dari himpunan B atau A terkandung oleh B dinotasikan sbb: A B Dapat juga ditulis dengan : B A Yang artinya B mengandung A
Contoh: C = {1,2,3} dan A = {1,2,3,4} maka himpunan C merupakan himpunan sejati dari karena anggota himpunan C yaitu 1,2 dan 3 juga merupakan anggota himpunan dari A dan ditulius C A atau A C
OPERASI HIMPUNAN Ada beberapa aturan dalam operasi himpunan yaitu: GABUNGAN (UNION) Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau himpunan B atau keduanya. Dituliskan dengan notasi: A B Contoh : Misalkan A = {a,b,c} dan B = {c,d,e,f} maka A B = {a,b,c,d,e,f} Misalkan P = {1,2,3} dan Q = {1,2,3,4,5,6} maka P Q = {1,2,3,4,5,6}
IRISAN (INTERSEKSI) Irisan dari himpunan A dan himpunan B adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan A tetapi juga merupakan anggota himpunan B. Irisan dari himpunan A dan B dilukiskan dengan lambang A B. Contoh: Misalkan A = {a,b,c,d} dan B = {c,d,e,f,g} maka A B = {c,d} SELISIH Selisih antara himpunan A dan himpunan B adalah yang anggota-anggotanya merupakan anggota himpunan A tetapi bukan anggota himpunan B
Contoh: Misalkan A = {12,14,16,13,15) dan B = {9,10,12,13} maka A – B = {14,15,16} Misalkan P = {a,b,c,d} dan Q = {a,b,e,f} maka P – Q = {c,d} 4. KOMPLEMEN Komplemen dari himpunan A adalah himpunan yang anggotanya merupakan selisih antara himpunan semesta U dan himpunan A. Komplemen dari himpunan A ditulis A’ atau Ā. Misalkan himpunan semesta U anggotanya adalah bilangan 1 sampai 100 dan A = {1,2,3} maka A’ = {4,5,6,…...,99,100}
KAIDAH MATEMATIKA DALAM OPERASI HIMPUNAN KAIDAH IDEMPOTEN A A = A A A = A KAIDAH ASOSIATIF (AB)C = A(BC) (AB)C = A(BC) KAIDAH KOMUTATIF AB = BA A B = B A KAIDAH DISTRIBUTIF A(BC) = (AB) (AC) A (BC) = (AB) (AC)
KAIDAH IDENTITAS A = A A = A S = S A S = A
TUGAS 1 (SOAL-SOAL LATIHAN) Tulislah pernyataan-pernyataan di bawah ini dengan menggunakan lambang himpunan: a bukan anggota himpunan A p adalah anggota himpunan Q X adalah himpunan bagian sejati dari Y R bukan himpunan bagian sejati dari S Himpunan M mengandung himpunan N Bila P= {a,b,c} maka dari pernyataan-pernyataan di bawah ini mana yang benar dan salah, jika salah sebutkan alasannya: a P b. {b} P c. a P d. {b} P
Himpunan semesta U={a,b,c,d,e} dan misalkan A={a,b,e}, B= {a,c,d} dan C= {b,e} maka carilah : a. A B b. B C A – C d. A C Dengan menggunakan data pada soal no.3 gambarkan diagram Venn dari himpunan berikut ini: A B b. (A B) C c. A B d. (A B) C
5. Bila ditentukan: X = {a,b,c,d,e} Y = {b,c,d} Z = {c,d} tunjukkan pernyataan-pernyataan berikut ini yang salah dan sebutkan mengapa! a. Y X b. Z X Y X d. Z Y 6. Dapatkan gabungan dari himpunan H1 dan himpunan H2 berikut ini: a. H1 = {1,2,3} b. H1 = {a,1,2} H2 = {a,b,c} H2 = {a,b,c} c. H1 = {a,b,2} H2 = {a,b.c}
7. Dapatkan irisan dari himpunan H1 dan H2 pada soal nomor 6 di atas Dengan menggunakan himpunan-himpunan pada soal nomor 6, carilah H1 - H2 dan H2 – H1