Persamaan dan Pertidaksamaan Nilai Mutlak serta Beberapa Fungsi Oleh : VENY TRIYANA ANDIKA SARI
Sistem Bilangan Real Sistem Bilangan : himpunan dari bilangan – bilangan beserta sifat2nya. Himpunan Bilangan Asli (N) = {1, 2, 3, …} Himpunan Bilangan Cacah = {0, 1, 2, 3, … } Himpunan Bilangan Bulat (Z) = { …,-3,-2,-1,0,1,2,3, …} Himpunan Bilangan Rasional (Q) : Suatu bilangan yang dinyatakan p/q dengan p dan q bilangan bulat dan q ≠ 0 Himpunan Bilangan Irrasional : bilangan yang tidak dapat dinyatakan ke bentuk rasional Himpunan Bilangan Real : Gabungan himpunan bilangan rasional dengan himpunan bilangan irrasional.
Sistem Bilangan Bil Real Bil Rasional Bil Bulat Bil Asli
Selang Pertidaksamaan Suatu himpunan bagian dari himpunan bilangan real. Penulisan Himpunan Selang Grafik {x| a < x < b} (a,b) {x| a ≤ x < b } [a, b) {x | a < x ≤ b } (a, b] {x| a ≤ x ≤ b } [a, b] {x | x ≤ b } (-∞, b] {x | x < b } (-∞, b) {x | a ≤ x } [a, +∞) {x | a < x } (a, +∞) a b
Nilai Mutlak Nilai mutlak dari bilangan real x, ditulis |x|, didefinisikan sebagai berikut :
Sifat-sifat Nilai Mutlak Untuk setiap bilangan real x berlaku |x| 0 |x| = |- x| - |x| ≤ x ≤ |x| |x|2 = |x2| = x2 Untuk setiap bilangan real x dan y berlaku : |x| = |y| ↔ x = ± y ↔ x2 = y2 |x – y | = |y – x |
Sifat-sifat Nilai Mutlak Jika a 0, maka |x| ≤ a ↔ -a ≤ x ≤ a ↔ x2 ≤ a |x| a ↔ x a atau x ≤ - a ↔ x2 a2 Ketaksamaan segitiga. Untuk setiap bilangan real x dan y berlaku : |x + y| ≤ |x| + |y| |x – y| ≤ |x| + |y| |x| - |y| ≤ |x – y | | |x| - |y| | ≤ |x – y |
Sifat – sifat nilai mutlak Untuk setiap bilangan real x dan y berlaku: |xy| = |x| |y| |x/y| = |x| / |y|; y ≠ 0
FUNGSI Definisi Fungsi f adalah suatu aturan korespodensi yang menghubungkan tiap obyek x dalam suatu himpunan (daerah asal) dengan sebuah nilai unik (tunggal) f(x) dari himpunan kedua yaitu himpunan nilai yang disebut daerah hasil fungsi tersebut.
Jenis – jenis Fungsi Fungsi linier Fungsi kuadrat Fungsi trigonometri Fungsi eksponential Fungsi logaritma
Fungsi linier Fungsi linear memiliki gambar grafik sebagai garis lurus. Notasinya adalah sbb: y = f(x) = a1x + a0; a1 ≠ 0 contoh : y = 4x + 3 a1 disebut gradien atau koefisien kemiringan
Fungsi kuadrat Grafik bentuk kuadrat berupa parabola, dimana bentuk rumusnya adalh: y = f(x) = a2x2 + a1x +a0; a2 ≠ 0 Contoh : y = x2 – 4x + 3
Fungsi Eksponential Persamaan umum fungsi eksponen : y = f(x) = ax; a > 0, a ≠ 1
Fungsi Logaritma Fungsi logaritma didefinisikan dengan persamaan : y = f(x) = logax , a > 0 , a ≠ 1 Fungsi ini terdefiniskan untuk x > 0, dan merupakan invers dari fungsi eksponen.
Operasi Fungsi Jumlah dan Selisih Misalkan f dan g adalah sebuah fungsi, maka : (f + g) (x) = f(x) + g(x) (f – g) (x) = f(x) – g(x) catatan : Daerah asal (f + g) dan (f - g) adalah irisan dari daerah asal f dan g
Operasi Fungsi Hasil kali, Hasil Bagi dan Pangkat Dengan anggapan bahwa f dan g mempunyai daerah asal, maka (f • g) (x) = f(x) • g(x) (f/g) (x) = f(x) / g(x) ; g(x) ≠ 0 Operasi perpangkatan pada dasarnya adalah perkalian berulang. fn artinya f kali f sebanyak n kali.
CONTOH ccSOAL cccccccCCCCCCCC CCCCCC Contoh soal Diketahui : f(x) = 2x-4 g(x) = -3x+2 Ditanya : 1. f+g = 2x-4-3x+2 = -x-2 2. f–g = 2x -4 –(-3x+2) = 5x - 6 3. f · g = (2x – 4)(-3x+2) = -6x² + 16x – 8 4. f/g = (2x-4)/(-3x+2) = (-6x²+8x+8)/(9x²-4) CONTOH ccSOAL cccccccCCCCCCCC CCCCCC
FUNGSI KONSTAN Notasinya : f(x) = c Apabila terdapat fungsi f : AB, Fungsi f disebut fungsi konstan jika setiap anggota A dipetakan ke satu anggota B yang sama Misalkan : f(x) = 2 dan x bil real Grafik fungsi ini berupa garis lurus sejajar sumbu x
FUNGSI LINIER Notasinya : f(x) = mx+n Grafik fungsi ini berupa garis lurus dengan gradien m dan melalui titik (0,n)
GRAFIK FUNGSI Diketahui : f(x) = x+1 dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius
GRAFIK FUNGSI Diketahui : f(x) = 2x dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius
FUNGSI KUADRAT
CONTOH FUNGSI KUADRAT Diketahui : f(x) = 2x² dimana domain dan kodomain berupa bil riil Menuliskan fungsi dalam tabel Menuliskan fungsi dalam grafik Kartesius : X -2 -1 1 2 F(X) 8
FUNGSI KUBIK Fungsi kubik: .
FUNGSI PECAH
FUNGSI IRASIONAL
Fungsi Trigonometri 1. definisi sinus, cosinus, dan tangen dalam segitiga siku-siku; 2. fungsi sinus; 3. fungsi cosinus; 4. fungsi tangen. 5. fungsi arc sinus; 6. fungsi arc cosinus; 7. fungsi arc tangen.
Fungsi Invers Trigonometri Definisi Jika x = sin y, maka fungsi invers dari sinus didefinisikan dengan y = arc sin x. Dengan cara yang sama, jika: x = cos y maka inversnya adalah y = arc sin x; x = tan y maka inversnya adalah y = arc tan x.
Contoh soal 1. Jika sin y = 0,5, hitunglah y, jika y < 90o! Penyelesaian: sin y = 0,5 y = arc sin 0,5 y = 30o Catatan : ingat bahwa sin 30o = 0,5
Contoh soal 2. Jika cos y = 0,7071, hitunglah y jika y < 90o! Penyelesaian: cos y = 0,7071 y = arc cos 0,7071 y = 45o Catatan : ingat bahwa cos 45o = 0,7071
Contoh soal 3. Jika tan y = 1,7321, hitunglah y, jika y < 90o! Penyelesaian: tan y = 1,7321 y = arc tan 1,7321 y = 60o Catatan : ingat bahwa tan 60o = 1,7321
Tugas 5 (Individu) Buku Paket “PENGENALAN ALJABAR” Halaman 33, 38 & 46