Kuliah Mekanika Fluida

Slides:



Advertisements
Presentasi serupa
MEKANIKA ZALIR (FLUIDA)
Advertisements

ALIRAN MELALUI LUBANG DAN PELUAP
Kuliah Hidraulika Wahyu Widiyanto
DINAMIKA FLUIDA FISIKA SMK N 2 KOTA JAMBI.
FLUIDA BERGERAK ALIRAN FLUIDA.
Tugas 1 masalah properti Fluida
FLUIDA DINAMIS j.
Mekanika Fluida Membahas :
Berkelas.
Matakuliah : K0614 / FISIKA Tahun : 2006
Soal dan Penyelesaian Stabilitas Benda Terapung
Kuliah Mekanika Fluida
Mekanika Fluida – Fani Yayuk Supomo, ST., MT
SISTEM DAN JARINGAN PIPA
Kelompok II Matakuliah UNIT PROSES
Kuliah MEKANIKA FLUIDA
Kehilangan Energi pada
Selamat Belajar… Bersama Media Inovasi Mandiri Semoga Sukses !!
Dinamika Fluida Disusun oleh : Gading Pratomo ( )
Fluida TIM FISIKA UHAMKA 2012
FISIKA FLUIDA yusronsugiarto.lecture.ub.ac.id
CONTOH SOAL & PEMBAHASAN MEKANIKA FLUIDA disusun oleh silfiana dewi_
MEKANIKA FLUIDA Farid Suleman
Mekanika Fluida Jurusan Teknik Sipil Pertemuan: 4.
Fulida Ideal : Syarat fluida dikatakan ideal: 1. Tidak kompresibel 2
Hidrostatika Hidrostatika adalah ilmu yang mempelajari fluida yang tidak bergerak. Fluida ialah zat yang dapat mengalir. Seperti zat cair dan gas. Tekanan.
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
FLUIDA DINAMIS Oleh: STAVINI BELIA
Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
HIDRODINAMIKA.
Konsep Aliran Zat Cair Melalui (Dalam) Pipa
DINAMIKA FLUIDA.
ALIRAN INVISCID DAN INCOMPRESSIBLE, PERSAMAAN MOMENTUM, PERSAMAAN EULER DAN PERSAMAAN BERNOULLI Dosen: Novi Indah Riani, S.Pd., MT.
BAB FLUIDA.
MEKANIKA ZAT PADAT DAN FLUIDA
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
DINAMIKA FLUIDA.
Prof.Dr.Ir. Bambang Suharto, MS
Saluran Terbuka dan Sifat-sifatnya
PRINSIP-RINSIP UMUM VENTILASI
Dasar Perhitungan Hidrolik
DINAMIKA FLUIDA FISIKA SMK PERGURUAN CIKINI.
MEKANIKA FLUIDA I Dr. Aqli Mursadin Rachmat Subagyo, MT
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
MEKANIKA ZALIR (FLUIDA)
Kuliah Mekanika Fluida
Kelas XI Endang Sriwati, S.Pd.
MEKANIKA FLUIDA FLUIDA SMA NEGERI 1 GLENMORE Tekanan Hidrostatis CAIR
PERSAMAAN MOMENTUM.
STATIKA FLUIDA Suatu padatan adalah bahan tegar yang mempertahankan bentuknya terhadap pengaruh gaya-gaya luar Fluida (zat alir) adalah bahan tak tegar.
Kuliah MEKANIKA FLUIDA
MODUL 2: ALIRAN BAHAN CAIR Dr. A. Ridwan M.,ST.,M.Si,M.Sc.
MEKANIKA ZALIR (FLUIDA)
Fluida : Zat yang dapat mengalir
FLUIDA DINAMIS j.
DINAMIKA FLUIDA.
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
PERTEMUAN 1.
FISIKA FLUIDA STATIS & FLUIDA DINAMIS BERANDA FLUIDA STATIS DINAMIS
BAHAN AJAR FISIKA FLUIDA DINAMIS
PENGANTAR TEKNOLOGI INFORMASI
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
Fluida adalah zat yang dapat mengalir Contoh : udara, air,minyak dll
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
FLUIDA DINAMIS Rado Puji Wibowo (15/380118/PA/16720) Aldida Safia Ruzis (16/394055/PA/17146)
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
Alfandy Maulana Yulizar Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas.
1. Aliran bersifat steady/tunak(tetap) FLUIDA FLUIDA IDEAL FLUIDA SEJATI 2. Nonviscous (tidak kental) 2. Viscous (kental) 1. alirannya turbulen 3. Incompresibel.
Transcript presentasi:

Kuliah Mekanika Fluida PERSAMAAN BERNOULLI Kuliah Mekanika Fluida

Anggapan-anggapan untuk Menurunkan Persamaan Bernoulli Zat cair adalah ideal, tidak punya kekentalan Zat cair adalah homogen & tidak termampatkan Aliran adalah kontinyu & sepanjang garis arus Kecepatan aliran adalah merata dalam suatu penampang Gaya yang bekerja hanya gaya berat & tekanan

Bentuk Persamaan Bernoulli Dengan : Z : elevasi (tinggi tempat) : tinggi tekanan : tinggi kecepatan

Konstanta C adalah tinggi energi total, yang merupakan jumlah dari tinggi tempat, tinggi tekanan dan tinggi kecepatan, yang berbeda dari garis arus yang satu ke garis arus yang lain. Oleh karena itu persamaan tersebut hanya berlaku untuk titik-titik pada satu garis arus.

Persamaan Bernoulli dapat digunakan untuk menentukan garis tekanan dan tenaga. Garis tenaga dapat ditunjukkan oleh elevasi muka air pada tabung pitot yang besarnya sama dengan tinggi total dari konstanta Bernoulli. Sedangkan garis tekanan dapat ditunjukkan oleh elevasi muka air di dalam tabung vertikal yang disambung pada pipa.

Aplikasi persamaan Bernoulli untuk kedua titik di dalam medan aliran akan memberikan : Yang menunjukkan bahwa jumlah tinggi elevasi, tinggi tekanan dan tinggi kecepatan di kedua titik adalah sama. Dengan demikian garis tenaga pada aliran zat cair ideal adalah konstan.

Contoh Hitungan Suatu pipa mempunyai luas tampang yang mengecil dari diameter 0,3 m (tampang 1) menjadi 0,1 m (tampang 2). Selisih elevasi tampang 1 dan 2 (dengan tampang 1 di bawah) adalah Z. Pipa mengalirkan air dengan debit aliran 50 l/d. Tekanan di tampang 1 adalah 2 kgf/cm2. Apabila tekanan pada tampang 2 tidak boleh lebih kecil dari 1 kgf/cm2, hitung nilai Z. Kehilangan tenaga diabaikan dan percepatan gravitasi g = 9,81 m/d2.

Penyelesaian P1 = 2 kgf/cm2 = 2 x 10.000 = 20.000 kgf/m2

Persamaan Bernoulli untuk Zat Cair Riil Pers. Bernoulli untuk zat cair ideal : tidak ada kehilangan tenaga karena dianggap zat cair tidak punya kekentalan (invisid) sehingga tidak ada gesekan antar partikel zat cair maupun dengan dinding batas. Pers. Bernoulli untuk zat cair riil : kehilangan tenaga diperhitungkan karena kekentalan zat cair juga diperhitungkan

Kehilangan Tenaga Ada 2 macam : 1. Kehilangan tenaga primer (hf) : terjadi karena adanya gesekan antara zat cair dan dinding batas 2. Kehilangan tenaga sekunder (he) : terjadi karena adanya perubahan tampang aliran.

Garis tenaga Σhe+ Σ hf Garis tekanan 1 2 3 Z1 Z2 Z3

Rumus Kehilangan Tenaga Untuk kehilangan tenaga primer Untuk kehilangan tenaga sekunder

Dengan : K : konstanta V : kecepatan aliran f : koefisien gesekan L : panjang pipa D : diameter pipa A1 : luas tampang pipa 1 (hulu) A2 : luas tampang pipa 2 (hilir)

Contoh Soal Air mengalir dari kolam A menuju kolam B melalui pipa 1 dan 2. Elevasi muka air kolam A dan B adalah +30 m dan +20 m. Data pipa 1 dan 2 adalah L1 = 50 m, D1=15cm, f1=0,02 dan L2=40m, D2=20cm, f2=0,015. Koefisien kehilangan tenaga sekunder di C, D, dan E adalah 0,5; 0,5; dan 1. hitung debit aliran !

Garis tenaga hec hf1 heD H Garis tekanan hf2 A heE Z1 B Z2 C 1 D 2 E

Penyelesaian Tekanan di titik 1 & 2 = tekanan atmosfer → p1 = p2 = 0 Kecepatan di titik 1 & 2 = diam → V1 = V2 = 0

Didapat V1 = 4,687 m/d Debit aliran:

Koefisien Koreksi Energi Dalam analisis aliran satu dimensi, kecepatan aliran pada suatu tampang dianggap konstan. Pada kenyataannya, kecepatan pada penampang adalah tidak merata. Kecepatan di dinding batas adalah nol dan bertambah dengan jarak dari dinding batas. Untuk itu diperlukan koefisien koreksi (α).

Pemakaian Persamaan Bernoulli Tekanan hidrostatis Tekanan stagnasi Alat pengukur kecepatan Alat pengukur debit

1. Tekanan Hidrostatis 1 h p 2 p p2 = h γ + pa = h γ

2. Tekanan Stagnasi po S Vo

3. Alat Pengukur Kecepatan (Tabung Pitot)

4. Alat Pengukur Debit (Venturimeter) Pc Po Do Dc Do g1 hm g2

Contoh Soal Tabung Pitot yang digunakan untuk menentukan kecepatan air di dalam pipa menunjukkan perbedaan antara elevasi muka air di tabung Pitot dan piezometer adalah 48 mm. Hitung kecepatan aliran air. Venturimeter dipasang pada pipa dengan diameter 15 cm dan mempunyai diameter leher 10 cm yang berada pada posisi mendatar. Alat tersebut digunakan untuk mengukur aliran minyak dengan rapat relatif 0,9. Manometer berisi air raksa yang dipasang pada venturimeter menunjukkan perbedaan pengukuran 20 cm. Apabila koefisien alat ukur adalah 0,98 hitung debit aliran dalam liter per menit.