Kode Hamming.

Slides:



Advertisements
Presentasi serupa
Teknik Komunikasi Data Digital
Advertisements

William Stallings Komunikasi Data dan Komputer
Serial Communication II
UNDERSTANDING NETWORK DESIGN IP ADRESS & SUBNETTING
William Stallings Komunikasi Data dan Komputer Edisi ke 7
Error detection.
2. Introduction to Algorithm and Programming
Alg&Pemrog 2B Sistem Komputer Variable  Variable dapat didefinisikan sebagai bagian dari memory untuk menyimpan nilai yang telah ditentukan.  Setiap.
CONCURENCY CONTROL DISTRIBUTED DATABASE. M AIN TOPICS Transaction managements Centralized database Distributed database Consistency control Centralized.
SUBPROGRAM IN PASCAL PROCEDURE Lecture 5 CS1023.
Sistem – Sistem Bilangan, Operasi dan kode
Kuliah Mikrokontroler AVR Komunikasi Serial - USART AVR ATmega16
TEKNIK PENGINTEGRALAN
The Hamming Code.
Perancangan Database Pertemuan 07 s.d 08
Pertemuan 05 Error Detection
BAGIAN III Lapisan Data Link.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
ORGANISASI DATA.
Pengkodean dan Error Control
Memory and Storage Chapter 24 Subject: Digital System Year: 2009.
Masalah Transportasi II (Transportation Problem II)
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Lapisan Data Link BAGIAN III.
Layer Data Link Pertemuan 13 Matakuliah: H0484/Jaringan Komputer Tahun: 2007.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Pertemuan 06 Sinyal dan Data
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Network Design (IP Address dan Subnetting). Tujuan Mengenal IP Address, bisa mengidentifikasinya dan bisa menggunakannya dalam membangun jaringan. Bisa.
IP Addressing Laboratorium Teknik Informatika Universitas Gunadarma Stefanus Vlado Adi Kristanto Version 1.4.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 9 Relational Database Design by ER- to-Relational Mapping.
Jaringan Nirkabel Bab #5 – Enkoding Sinyal.
KOMUNIKASI DATA Materi Pertemuan 8.
Teknik. Pemrog. Terstruktur 2
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
Pengkodean.
JARINGAN KOMPUTER Chandra Hermawan, M.Kom.
Recurrence relations.
KOMUNIKASI DATA Materi Pertemuan 4.
Konsep pemrograman LOOP
Transmisi data digital
AKT211 – CAO 08 – Computer Memory (2)
ERROR CORRECTION.
KOMUNIKASI DATA S. Indriani L, M.T
Matakuliah : R0124 / Teknik Komunikasi Arsitektur
ORGANISASI MEMORI Teknik Informatika UIN ALAUDDIN MKS
Data Link Layer.
Protokol Data Link Control
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
Sistem Bilangan.
Deteksi & Koreksi Error
REAL NUMBERS EKSPONENT NUMBERS.
Komunikasi dan Jaringan Komputer Prepared By : Afen Prana
I. SISTEM BILANGAN BINER
Teknik Modulasi Pertemuan 07
Master data Management
Pertemuan 05 Error Detection
Database User Account.
Kuliah 1 : Sistem Bilangan
Menentukan Decoding Kode dengan Koreksi Satu Kesalahan
KULIAH “PRAKTIKUM BASIS DATA“ TEKNIK INFORMATIKA UNIVERSITAS MERCU BUANA Oleh : AFIYATI S.KOM, MT.
Simultaneous Linear Equations
Teknik. Pemrog. Terstruktur 2
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Right, indonesia is a wonderful country who rich in power energy not only in term of number but also diversity. Energy needs in indonesia are increasingly.
Transcript presentasi:

Kode Hamming

Kode Hamming merupakan kode non-trivial untuk koreksi kesalahan yang pertama kali diperkenalkan. Kode ini dan variansinya telah lama digunakan untuk kontrol kesalahan pada sistem komunikasi digital. Kode Hamming biner dapat direpresentasikan dalam bentuk persamaan: (n,k) = (2m-1, 2m-1-m)

Contoh: jika m = jumlah paritas = 3 k = jumlah data = 4 n = jumlah bit informasi yang membentuk n sandi = 7 maka kode Hamming nya adalah C (7,4) dengan dmin =3

Forward Error Correction Error Correcting codes dinyatakan sebagai penerusan koreksi kesalahan untuk mengindikasikan bahwa pesawat penerima sedang mengoreksi kesalahan. Kode pendeteksi yang paling banyak digunakan merupakan kode Hamming. Posisi bit-bit Hamming dinyatakan dalam 2n dengan n bilangan bulat sehingga bit-bit Hamming akan berada dalam posisi 1, 2, 4, 8, 16, dst..

Error Correction(cont’d) Hamming Code ~ developed by R.W.Hamming positions of redundancy bits in Hamming code

The key to the Hamming Code is the use of extra parity bits to allow the identification of a single error. Create the code word as follows: Mark all bit positions that are powers of two as parity bits. (positions 1, 2, 4, 8, 16, 32, 64, etc.) All other bit positions are for the data to be encoded. (positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.) Each parity bit calculates the parity for some of the bits in the code word. The position of the parity bit determines the sequence of bits that it alternately checks and skips. Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. (1,3,5,7,9,11,13,15,...) Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc. (2,3,6,7,10,11,14,15,...) Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. (4,5,6,7,12,13,14,15,20,21,22,23,...) Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc. (8-15,24-31,40-47,...) Position 16: check 16 bits, skip 16 bits, check 16 bits, skip 16 bits, etc. (16-31,48-63,80- 95,...) Position 32: check 32 bits, skip 32 bits, check 32 bits, skip 32 bits, etc. (32-63,96-127,160- 191,...) etc. Set a parity bit to 1 if the total number of ones in the positions it checks is odd. Set a parity bit to 0 if the total number of ones in the positions it checks is even.

Example: A byte of data: 10011010 Create the data word, leaving spaces for the parity bits: _ _ 1 _ 0 0 1 _ 1 0 1 0 Calculate the parity for each parity bit (a ? represents the bit position being set): Position 1 checks bits 1,3,5,7,9,11: ? _ 1 _ 0 0 1 _ 1 0 1 0. Even parity so set position 1 to a 0: 0 _ 1 _ 0 0 1 _ 1 0 1 0 Position 2 checks bits 2,3,6,7,10,11: 0 ? 1 _ 0 0 1 _ 1 0 1 0. Odd parity so set position 2 to a 1: 0 1 1 _ 0 0 1 _ 1 0 1 0 Position 4 checks bits 4,5,6,7,12: 0 1 1 ? 0 0 1 _ 1 0 1 0. Odd parity so set position 4 to a 1: 0 1 1 1 0 0 1 _ 1 0 1 0 Position 8 checks bits 8,9,10,11,12: 0 1 1 1 0 0 1 ? 1 0 1 0. Even parity so set position 8 to a 0: 0 1 1 1 0 0 1 0 1 0 1 0 Code word: 011100101010.

Error Correction(cont’d) Calculating the r values Calculating Even Parity

Contoh Error Correction(cont’d) Error Detection and Correction

Error Correction(cont’d) Error detection using Hamming Code

Error Correction(cont’d) Multiple-Bit Error Correction redundancy bits calculated on overlapping sets of data units can also be used to correct multiple-bit errors. Ex) to correct double-bit errors, we must take into consideration that two bits can be a combination of any two bits in the entire sequence