3. PERTIDAKSA MAAN KUADRAT

Slides:



Advertisements
Presentasi serupa
Persamaan Garis dan Grafik Kuadrat
Advertisements

FUNGSI Sri hermawati.
Pertidaksamaan Kelas X semester 1 SK / KD Indikator Materi Contoh
Widita Kurniasari Universitas Trunojoyo
Fungsi Kuadrat Grafik Fungsi Kuadrat Definisi 1.7 : Fungsi y = f (x) =
TUGAS MEDIA NAMA KELOMPOK: ANGGA WIDYAH A A A
RELASI & FUNGSI Widita Kurniasari.
MODUL KULIAH MATEMATIKA TERAPAN
Kelas XE WORKSHOP MATEMATIKA
MENU UTAMA MENU UTAMA PENDAHULUAN PENDAHULUAN INDIKATOR INDIKATOR TUJUAN PEMBELAJARAN TUJUAN PEMBELAJARAN CARA MENYELESAIKAN PERSAMAAN.K CARA MENYELESAIKAN.
Memahami KONSEP FUNGSI Fungsi : f(x) Oleh: Ibnu Fajar,S.Pd
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
PERSAMAAN GARIS PROGRAM STUDI PENDIDIKAN MATEMATIKA Oleh Kelompok 4 :
Assalamualaikum Wr Wb PERSAMAAN GARIS LURUS BY Yanuar Kristina P
ASSALAMUALAIKUM WR WB.
2.1 Bidang Bilangan dan Grafik Persamaan
Kelompok 2 Rizki Resti Ari ( ) Naviul Hasanah ( )
Menggambar Grafik Fungsi Kuadrat
Fungsi Riri Irawati, M.Kom 3 sks.
Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara.
Fungsi & Grafiknya Riri Irawati, M.Kom 3 sks.
STKIP SILIWANGI JENIS-JENIS FUNGSI A2 MATEMATIKA 2014
KONSEP DASAR Fungsi dan Grafik
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
FUNGSI DAN RELASI Kalkulus Nina Hairiyah, S.TP., M.Si Pertemuan II
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
ASSALAMUALAIKUM WR WB.
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
X O Y y = - (x + 2)2 Grafik Fungsi Kuadrat.
0leh: Drs. Markaban, M.Si Widyaiswara PPPPTK Matematika
MENU UTAMA PILIHAN MENU PILIHAN MENU KOMPETENSI DASAR/INDIKATOR
Relasi dan Fungsi (X-Wajib).
FAKTORISASI SUKU ALJABAR DAN FUNGSI
Bab 2 Persamaan dan Fungsi Kuadrat
PERTIDAKSAMAAN.
RELASI DAN FUNGSI SMP KELAS VIII Di Buat Oleh : Dwi yuli anita.
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
FUNGSI KUADRAT Oleh : Drs.Alexander Htu,M.Si
Oleh : Ir. Ita Puspitaningrum M.T
PERSAMAAN KUADRAT OLEH : SMA KKK JAYAPURA.
Fungsi Kuadrat dan Grafik Fungsi Kuadrat
BAB 4 FUNGSI KUADRAT.
FUNGSI KOMPOSISI DAN FUNGSI INVERS
Oleh : Irayanti Adriant, S.Si, M.T
Matematika I Bab 3 : Fungsi
Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara.
Pertemuan 11 FUNGSI.
PROGRAM LINEAR sudir15mks.
Fungsi Oleh : Astri Setyawati ( )
Kapita selekta matematika SMA
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
KONSEP DASAR Fungsi dan Grafik
KD. 2.2 Menggambar grafik fungsi Aljabar sederhana dan fungsi kuadrat.
Fungsi Kuadrat dan Grafik Fungsi Kuadrat
Translasi (Pergeseran)
PERTIDAKSAMAAN OLEH Ganda satria NPM :
RELASI, FUNGSI & KORESPONDENSI 1-1
Nama : Hendrik Pical TTL : Banjar Masin, Pendidikan : S1 Prodi : Matematika Hobi : Menulis Alamat Web : Blokmatek.wordpress.com No.HP :
Pertidaksamaan Oleh : M Zakaria Al Ansori Alifian Maulidzi Bayu Kris.
Fungsi Kuadrat HOME NEXT PREV a. Persamaan grafik fungsi kuadrat
A. RELASI DAN FUNGSI Indikator : siswa dapat
FUNGSI DAN GRAFIKNYA.
09 Fungsi dan Grafik Fungsi Kuadrat Ir. Pranto Busono M.Kom. FASILKOM
Fungsi, Persamaan Fungsi Linear dan Fungsi Kuadrat
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
ULANGAN HARIAN LIMIT DURASI WAKTU 4 MENIT TIAP SOAL
Relasi, Fungsi dan Grafik Kelompok 3 : Al Imron ( ) Bani Araya ( ) Febrija Izaty Siallagan ( ) M. Fadhil Al Fajri ( ) M.
MENU UTAMA TURUNAN FUNGSI
SMK/MAK Kelas XI Semester 1
Transcript presentasi:

3. PERTIDAKSA MAAN KUADRAT MENU UTAMA 1. FUNGSI 2. PERSAMAAN KUADRAT 3. PERTIDAKSA MAAN KUADRAT 4. SOAL-SOAL LATIHAN PG KLICK DI KOTAK

PENDAHULUAN

Fungsi, Persamaan Kuadrat dan Pertidaksamaan Kuadrat

Nama : Hendrik Pical TTL : Banjar Masin,26-10-1956 Pendidikan : S1 Prodi : Matematika Hobi : Menulis Alamat Web : Blokmatek.wordpress.com No.HP : 081248149394 Alamat Email : Picalhendrik@ymail.com School : SMA Kristen Kalam Kudus Jayapura Jl.Ardipura I No. 50. Telepon 0967-533467 Jayapura Papua

Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap Eksis untuk membantu saudara-saudara sekalian agar dapat mengakses materi bahan ajar atau soal-soal dan lainnya dalam bentuk “POWERPOINT” silahkan salurkan lewat rekening Bank MANDIRI atas nama HENDRIK PICAL,A.Md,S.Sos dengan No. ac Bank 1540004492181. dan konvirmasi lewat No. HP. 081248149394. Terima Kasih.

RELASI DAN FUNGSI Kompetensi Dasar : Indikator : Mendeskripsikan perbedaan konsep relasi dan fungsi Indikator : Konsep relasi dan fungsi dibedakan dengan jelas Jenis-jenis fungsi diuraikan dan ditunjukkan contohnya

A B RELASI DAN FUNGSI 2 4 6  1  2  3 8  4 Perhatikan anak panahnya 2 4 6  1  2  3 8  4 relasinya adalah “dua kali dari”

rumus pemetaannya f(x) = RELASI DAN FUNGSI x 2 4 6 8 f(x) 1 2 3 4 f(x)  2  4 6 8 rumus pemetaannya f(x) = x

RELASI DAN FUNGSI Ada 3 cara dalam menyatakan suatu relasi : Diagram panah Himpunan pasangan berurutan Diagram Cartesius Contoh: Diketahui himpunan A = {1,2,3,4,5} dan himpunan B = {becak, mobil, sepeda, motor,bemo}. Relasi yang menghubungkan himpunan A ke himpunan B adalah “banyak roda dari”. Tunjukkan relasi tersebut dengan:

RELASI DAN FUNGSI Jawab: a. Diagram panah c. Diagram Cartesius Y O 1 2 “banyak roda dari” 1. . becak becak • 2. mobil . mobil • 3. motor • . motor 4. sepeda . sepeda • 5. . bemo bemo • A O 1 2 3 X 4 B b. Himpunan pasangan berurutan = {(2, sepeda), (2, motor), (3, becak) (3, bemo), (4, mobil )}

RELASI DAN FUNGSI Pengertian Fungsi : . A B f Suatu fungsi f dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap elemen dari A secara tunggal , dengan elemen pada B . . A B f

Beberapa cara penyajian fungsi : RELASI DAN FUNGSI Beberapa cara penyajian fungsi : Dengan diagram panah f : D  K. Lambang fungsi tidak harus f. Misalnya, un = n2 + 2n atau u(n) = n2 + 2n Dengan diagram Kartesius Himpunan pasangan berurutan Dalam bentuk tabel

Gambarlah grafik sebuah fungsi : f: x  f(x) = x2 RELASI DAN FUNGSI Contoh : grafik fungsi Gambarlah grafik sebuah fungsi : f: x  f(x) = x2 dengan Df = {–2, –1, 0, 1, 2}, Rf = {0, 1, 4}. Y (–2,4) (2,4) 4 disebut bayangan (peta) dari 2 dan juga dari –2. – 2 dan 2 disebut prapeta dari 4, dan dilambangkan f–1(4) = 2 atau – 2. Grafik Kartesius merupakan grafik fungsi y=f(x) hanya apabila setiap garis sejajar sumbu- Y yang memotong grafik hanya memotong di tepat satu titik saja. (–1,1) (1,1) X O (0,0)

Beberapa Fungsi Khusus RELASI DAN FUNGSI Beberapa Fungsi Khusus 1). Fungsi Konstan 2). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan Fungsi Nilai Bulat Terbesar [[ x ] = {b | b  x < b + 1, b bilangan bulat, xR} Misal, jika 2  x < 1 maka [[x] = 2 6). Fungsi Linear 7). Fungsi Kuadrat 8). Fungsi Turunan

RELASI DAN FUNGSI Jenis Fungsi 1. Injektif ( Satu-satu) Fungsi f:AB adalah fungsi injektif apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Misalnya Fungsi f(x) = 2x adalah fungsi satu-satu dan f(x) = x2 bukan suatu fungsi satu-satu sebab f(-2) = f(2). 2. Surjektif (Onto) Fungsi f: AB maka apabila f(A)  B dikenal fungsi into. Jika f(A) = B maka f adalah suatu fungsi surjektif. Fungsi f(x) = x2 bukan fungsi yang onto 3. Bijektif (Korespondensi Satu-satu) Apabila f: A B merupakan fungsi injektif dan surjektif maka “f adalah fungsi yang bijektif”

FUNGSI LINEAR 1.Bentuk Umum Fungsi Linear Fungsi ini memetakan setiap x R kesuatu bentuk ax + b dengan a ≠ 0, a dan b konstanta. Grafiknya berbentuk garis lurus yang disebut grafik fungsi linear dengan Persamaan y = mx + c, m disebut gradien dan c konstanta 2. Grafik Fungsi Linear Cara menggambar grafik fungsi linear ada 2 : 1. Dengan tabel 2. Dengan menentukan titik- titik potong dengan sumbu x dan sumbu y

FUNGSI LINEAR Contoh : Suatu fungsi linear ditentukan oleh y = 4x – 2 dengan daerah asal Buat tabel titik-titik yangmemenuhi persamaan diatas . Gambarlah titik-titik tersebut dalam diagram Cartesius. Tentukan titik potong grafik dengan sumbu X dan sumbu Y. {x \-1 x 2, x R}. Jawab a. Ambil sembarang titik pada domain X -1 1 2 Y = 4x-2 -6 -2 2 6 Jadi, grafik fungsi melalui titik-titik (-1,-6), (0,-2), (1,2), (2,6)

FUNGSI LINEAR Y X O b. c. Titik potong dengan sumbu x ( y= 0 ) 6 • 2 • Jadi titik potong dengan sumbu X adalah ( ½,0) X O 1 2 -2 -1 Titik potong dengan sumbu Y ( x = 0 ) y = 4x – 2 y = 4(0) – 2 y = -2 Jadi titik potong dengan sumbu Y adalah (0,-2) • -2 • -6

FUNGSI LINEAR 3. Gradien Persamaan Garis Lurus Cara menentukan gradien : (i). Persamaan bentuk y = mx+c, gradiennya adalah m. (ii). Persamaan bentuk ax+by+c=0 atau ax+by=-c adalah m= (iii). Persamaan garis lurus melalui dua titik (x1,y1) dan (x2,y2), gradiennya adalah m = Contoh : Tentukan gradien persamaan garis berikut a. y = 3x – 4 b. 2x – 5y = 7 2. Tentukan gradien garis yang melalui pasangan titik (-2,3) dan (1,6)

FUNGSI LINEAR Jawab : 1a. Y = 3x – 4 gradien = m = 3 b. 2x - 5y = 7, a = 2 dan b = - 5 m = = - 2. m = = = 1

FUNGSI LINEAR 4. Menentukan Persamaan Garis Lurus Persamaan garis melalui sebuah titik (x1,y1) dan gradien m adalah y – y1 = m ( x – x1 ) Persamaan garis melalui dua titik (x1,y1) dan (x2,y2) adalah = Contoh 1 : Tentukan persamaan garis yang melalui titik ( -2, 1 ) dan gradien -2 Jawab : y – y1 = m ( x – x1 ) y – 1 = -2 ( x – (-2)) y - 1 = -2x – 4 y = -2x - 3

FUNGSI LINEAR Contoh 2 : Tentukan persamaan garis yang melalui titik P(-2, 3) dan Q(1,4) Jawab : = 3(y – 3) = 1(x + 2) 3y – 9 = x + 2 3y - x – 11 = 0

FUNGSI LINEAR 5. Kedudukan dua garis lurus Dua garis saling berpotongan jika m1 ≠ m2 Dua garis saling sejajar jika m1 = m2 Dua garis saling tegak lurus jika m1. m2 = -1 atau m1 = - Contoh : Tentukan persamaan garis lurus yang melalui titik (2,-3) dan sejajar dengan garis x – 2y + 3 = 0 Tentukan persamaan garis lurus yang melalui titik (-3,5) dan tegak lurus pada 6x – 3y – 10 = 0

FUNGSI LINEAR Jawab : 1. Diketahui persamaan garis x – 2y + 3 = 0 maka Persamaan garis melalui titik (2,-3) dan gradien adalah y – y1 = m ( x – x1) y + 3 = ½ ( x – 2 ) y + 3 = ½ x – 1 2y + 6 = x – 2 x – 2y – 8 = 0 Jadi persamaan garis lurus yang sejajar dengan garis x – 2y + 3 = 0 dan melalui titik (2,-3) adalah x – 2y – 8 = 0

FUNGSI LINEAR 2. Diketahui persamaan garis 6x – 3y – 10 = 0. Persamaan garis lurus yang dicari melalui titik (-3,5) dan bergradien -½, maka persamaannya adalah y – y1 = m(x – x1) y – 5 = -½ (x + 3) y – 5 = -½x - 2y – 10 = -x – 3 x + 2y – 10 + 3 = 0 x + 2y – 7 = 0 Jadi, persamaan garis lurus yang melalui titik (-3,5) dan tegak lurus garis 6x – 3y – 10 = 0 adalah x + 2y – 7 = 0.

FUNGSI KUADRAT 1.Bentuk umum fungsi kuadrat y = f(x) ax2+bx+c dengan a,b, c  R dan a  0 Grafik fungsi kuadrat berbentuk parabola simetris 2. Sifat-sifat Grafik Fungsi Kuadrat Berdasarkan nilai a (i) Jika a > 0 (positif), maka grafik terbuka ke atas. Fungsi kuadrat memiliki nilai ekstrim minimum, dinotasikan ymin atau titik balik minimum. (ii) Jika a < 0 (negatif), maka grafik terbuka ke bawah. Fungsi kuadrat memiliki nilai ekstrim maksimum, dinotasikan ymaks atau titik balik maksimum.

FUNGSI KUADRAT Berdasarkan Nilai Diskriminan (D) Nilai diskriminan suatu persamaan kuadrat adalah D = b2 – 4ac Hubungan antara D dengan titik potong grafik dengan sumbu X Jika D > 0 maka grafik memotong sumbu X di dua titik yang berbeda. Jika D = 0 maka grafik menyinggung sumbu X di sebuah titik. Jika D < 0 maka grafik tidak memotong dan tidak menyinggung sumbu X.

Kedudukan Grafik Fungsi Kuadrat Terhadap Sumbu X (ii) a > 0 D = 0 X (iii) a > 0 D < 0 X (i) a > 0 D > 0 X X (v) X (iv) X (vi) a < 0 D = 0 a < 0 D > 0 a < 0 D < 0

3. Menggambar Grafik Fungsi Kuadrat Langkah-langkah menggambar grafik fungsi kuadrat : (i) Menentukan titik potong dengan sumbu X (y = 0) (ii) Menentukan titik potong dengan sumbu Y (x = 0) (iii) Menentukan sumbu simentri dan koordinat titik balik Persamaan sumbu simetri adalah x = Koordinat titik puncak / titik balik adalah (iv) Menentukan beberapa titik bantu lainnya (jika di perlukan)

FUNGSI KUADRAT Contoh : Jawab : Gambarlah grafik fungsi kuadrat y = x2 – 4x – 5. Jawab : (i) Titik potong dengan sumbu X (y = 0) x2 – 4x – 5 = 0 (x + 1)(x – 5) = 0 x = -1 atau x = 5 Jadi, titik potong grafik dengan sumbu X adalah titik (-1, 0) dan (5, 0). Titik potong dengan sumbu Y (x = 0) y = 02 – 4(0) – 5 y = -5 Jadi titik potong dengan sumbu Y adalah titik ( 0, -5 )

FUNGSI KUADRAT (iii) Sumbu simetri dan koordinat titik balik Jadi, sumbu simetrinya x = 2 dan koordinat titik baliknya (2, -9). (iv) Menentukan beberapa titik bantu. Misal untuk x = 1, maka y = -8. Jadi, titik bantunya (1, -8).

FUNGSI KUADRAT Grafiknya : Y • • X -1 0 1 2 3 4 5 • • • • • -1 -2 -3 -1 0 1 2 3 4 5 -1 -2 -3 -4 -5 -6 -7 -8 -9 • • • • •

FUNGSI KUADRAT Persamaan fungsi kuadrat f(x) =ax2 + bx + c apabila diketahui grafik fungsi melalui tiga titik Contoh: Tentukan fungsi kuadrat yang melalui titik (1,-4), (0,-3) dan (4,5) Jawab: f(x) = ax2 + bx + c f(1) = a(1)2 + b(1) + c = -4 a + b + c = -4 . . . 1) f(0) = a(0)2 + b(0) + c = -3 0 + 0 + c = -3 c = -3 . . . 2) f(4) = a(4)2 + b(4) + c = 5 16a + 4b + c = =5 . . . 3)

FUNGSI KUADRAT Substitusi 2) ke 1) a + b – 3 = -4 a + b = -1 . . . 4) Dari 4) dan 5) diperoleh : a + b = -1 x 4 4a + 4b = -4 16a + 4b = 8 x 1 16a + 4b = 8 _ -12a = -12 a = 1 Substitusi a = 1 ke 4) 1 + b = -1 b = -2 Jadi, fungsi kuadratnya adalah f(x) = x2 -2x -3

FUNGSI KUADRAT Contoh : Persamaan fungsi kuadrat f(x) = ax2 + bx + c apabila diketahui dua titik potong terhadap sumbu X dan satu titik lainnya dapat ditentukan dengan rumus berikut . Contoh : Tentukan persamaan fungsi kuadrat yang memotong sumbu X di titik A (1,0), B(-3,0), dan memotong sumbu Y di titik (0,3)

FUNGSI KUADRAT Jawab : Titik (1,0) dan (-3,0) disubstitusikan ke f(x) menjadi : f(x) = a(x – 1)(x + 3) . . . 1) Kemudian subsitusikan (0,3) ke persamaan 1) menjadi : 3 = a(0 - 1)(x + 3) 3 = -3a a = -1 Persamaan fungsi kuadratnya menjadi : Jadi fungsi kuadratnya adalah

FUNGSI KUADRAT Persamaan fungsi kuadrat f(x) = ax2 + bx + c apabila diketahui titik puncak grafik (xp’ yp) dan satu titik lainnya dapat ditentukan dengan rumus berikut.

FUNGSI KUADRAT Contoh : Tentukan persamaan fungsi kuadrat yang titik puncaknya (-1, 9) dan melalui (3, -7) Jawab : f(x) = a(x – xp)2 + yp (xp , yp) = (-1, 9) f(x) = a(x + 1 )2 + 9 . . . 1) Subsitusikan titik (3,-7) ke persamaan 1) menjadi : -7 = a(3 + 1)2 + 9 -16 = 16 a a = 1

MENU UTAMA PENDAHULUAN INDIKATOR TUJUAN PEMBELAJARAN CARA MENYELESAIKAN PERSAMAAN.K MENCARI AKAR-AKAR PERSAMAAN.K JUMLAH DAN HASIL KALI AKAR-AKAR SOAL-SOAL LATIHAN PENUTUP

MGMP Matematika MENU UTAMA MGMP MATEMATIKA SEKOLAH KRISTEN KALAM KUDUS JAYAPURA : EDITOR : Hendrik Pical,A.Md,S.Sos ALAMAT WEBSITE : www.mgmpmatematikadotcom.wordpress.com Telepon: 081248149394 MGMP Matematika

PERSAMAAN KUADRAT OLEH : SMA KKK JAYAPURA

PERSAMAAN KUADRAT INDIKATOR : Menentukan akar-akar persamaan kuadrat Menentukan himpunan penyelesaian pertidaksamaan kuadrat Menggunakan rumus jumlah dan hasil kali akar-akar persamaan kuadrat

TUJUAN PEMBELAJARAN : Menentukan akar-akar persamaan kuadrat dengan memfaktorkan Menentukan akar-akar persamaan kuadrat dengan melengkapkan kuadrat sempurna Menentukan akar-akar persamaan kuadrat dengan rumus kuadrat

Bentuk umum Persamaan kuadrat : ax2 + bx + c = 0 , a ≠ 0 Menyelesaikan persamaan kuadrat : 1. Memfaktorkan 2. Melengkapkan kuadrat sempurna 3. Rumus kuadrat

Mencari akar-akar persamaan kuadrat dengan memfaktorkan Contoh : Tentukan akar-akar PK x2 – 2x – 8 = 0 Jawab : x2 – 2x – 8 = 0 (x - 4)(x + 2) = 0 x = 4 atau x = -2 Jadi akar-akarnya adalah 4 atau -2

Mencari akar-akar persamaan kuadrat dengan melengkapkan kuadrat Contoh : Tentukan akar-akar PK x2 – 2x – 8 = 0 Jawab : x2 – 2x – 8 = 0 x2 – 2x = 8 x2 – 2x + (1/2 .-2)2 = 8 + (1/2 .-2)2 (x – 1)2 = 9 x – 1 = ± 3 x = 1 + 3 atau x = 1 – 3 x = 4 atau x = -2

Mencari akar-akar persamaan kuadrat dengan rumus kuadrat Akar-akar PK ax2 + bx + c = 0 adalah

Contoh : Tentukan akar-akar PK x2 – 2x – 8 = 0 Jawab: x2 – 2x – 8 = 0 a = 1 ; b = -2 c = -8 Dengan menggunakan rumus kuadrat kita peroleh sebagai berikut :

JUMLAH dan HASIL KALI akar-akar persamaan kuadrat Jika x1 dan x2 adalah akar- akar persamaan ax + bx + c = 0 maka diperoleh: x1 + x2 = - b/a x1 . x2 = c/a 2

Contoh : x2 + 2x - 8 = 0 maka tentukan: a. x1 + x2 b. x1 . x2 Jika x1 dan x2 adalah akar- akar persamaan x2 + 2x - 8 = 0 maka tentukan: a. x1 + x2 b. x1 . x2 c. (x1) 2 + (x2) 2 d. (x1) 2 . (x2) 2

Jawab: b. x1 . X2 = 8 c. (x1) 2 + (x2) 2 = (x1 + x2 )2 - 2 x1 . X2 a. x1 + x2 = - 2 b. x1 . X2 = 8 c. (x1) 2 + (x2) 2 = (x1 + x2 )2 - 2 x1 . X2 = (-2 )2 - 2 (8) = - 12 d. (x1) 2 . (x2) 2 = (x1 .x2) 2 = 64

HUBUNGAN ANTARA KOEFISIEN PK. DENGAN SIFAT AKAR

CONTOH :

Jawab :

MENYUSUN PK YANG AKAR –AKARNYA DIKETAHUI

1. Menggunakan Perkalian Faktor CONTOH :

Jawab :

Dengan Rumus Jumlah dan hasil Kali akar-akarnya Contoh.

Jawab :

ax2 + bx + c >0 ax2 + bx + c ≥ 0 ax2 + bx + c > 0 ax2 + bx + c ≤ 0 Bentuk umum:  a, b, c R a ≠ 0

LANGKAH KERJA : Buatlah Salah satu ruas bernilai nol (0) Ubah pertidaksamaan menjadi persamaan dan tentukan akar-akarnya Jika akarnya ada 2 buat lah sebuah garis bilangan Letakkan akar-akar yang diperoleh pada garis bilangan

LANGKAH KERJA : Daerah sebelah kiri dari akar yang lebih kecil berisi sesuai tanda suku bervariabel kuadrat (+ atau -) Daerah HP (+) jika pertidaksamaan dalam > atau ≤ Daerah HP (+) jika pertidaksamaan dalam > atau ≥ Jika daerah Hp ada 2 kata hubung “Atau” Jika daerah Hp ada 1 kata hubung “Dan”

CONTOH SOAL 3 Tentukan himpunan penyelesaian (HP) dari 2x2 + 10x > 3x -3

PEMBAHASAN SOAL 3 2x2 + 10x > 3x -3 2x2 + 10x – 3x +3 > 0 2x2 + 7x +3 > 0  ( x + 3)(2x + 1) = 0  x = -3 atau x = -1/2 + - + -3 -1/2

PENULISAN HIMPUNAN PENYELESAIAN dengan garis bilangan : -3 dengan notasi himpunan : {x | x < -3 atau x> }

CONTOH SOAL 4 Tentukan himpunan penyelesaian (HP) dari 5(x + 5) ≤ 3x – 15 < 6x  

PEMBAHASAN SOAL 4 5(x + 5) ≤ 3x – 15 < 6x 5x + 25 ≤ 3x – 15 5x – 3x ≤ -15 - 25 2x ≤ -40 x ≤ -20 3x – 15 < 6x 3x – 6x < 15 - 3x < 15 x > -5

PENULISAN HIMPUNAN PENYELESAIAN Notasi himpunan : {x| x ≤ -20 atau x > -5} Garis bilangan : -20 -5

LATIHAN SOAL 1 Tentukan himpunan penyelesaian (HP) dari

Jawab : 3(x - 1) ≥ 2(4x + 3) 3x - 3 ≥ 8x + 6 3x – 8x ≥ 6 + 3 -5x ≥ 9 . 3(x - 1) ≥ 2(4x + 3) 3x - 3 ≥ 8x + 6 3x – 8x ≥ 6 + 3 -5x ≥ 9 x ≤ -9/5 HP = {x ≤ -9/5}

Latihan 2 Besar biaya sewa sebuah bis dengan 40 tempat duduk Rp 5.000.000. Bila biaya yang dipungut panitia Rp 200.000/ peserta. Dan panitia ingin memperoleh keuntungan minimal Rp 2.000.000. Berapa batas perserta yang harus ikut?

Jawab : Misal : banyak peserta : x orang x tidak boleh lebih dari 40 orang  x ≤ 40 200.000x - 5.000.000 ≥ 2.000.000 200.000x ≥ 2.000.000 + 5.000.000 x ≥ 7.000.000/200.000 x ≥ 35 HP : {35 ≤ x ≤ 40}

LATIHAN SOAL 3 Tentukan himpunan penyelesaian (HP) dari 100 > 9x2 Jawab : 100 > 9x2 9x2 < 100 x2 < 100/9  x2 = 100/9  x2 = 100/9 x = ±10/3 + - + -10/3 10/3

Jawab : 100 > 9x2 9x2 < 100 x2 < 100/9  x2 = 100/9  x2 = x = ±10/3 + - + -10/3 10/3 HP {x < -10/3 atau x>10/3}

Latihan soal 4 Untung rugi hasil penjualan suatu barang dinyatakan dengan x2 + 70x -800. Jika x variabel banyaknya barang, tentukanlah banyaknya produksi barang Agar pabrik tersebut memperoleh keuntungan.

Jawab : Syarat untuk memperoleh keuntungan : Banyak barang yang diproduksi harus lebih besar dari 0  x > 0 keuntungan harus lebih besar dari 0

Banyak barang yang diproduksi harus lebih besar dari 10  x2 + 70x – 800 > 0  (x +80)(x-10) > 0 + - + . -80 10  x>10 Banyak barang yang diproduksi harus lebih besar dari 10

1 KUNCI JAWABAN SOAL PILIHAN GANDA ? A

2 KUNCI JAWABAN SOAL PILIHAN GANDA ? D

3 KUNCI JAWABAN SOAL PILIHAN GANDA ? E

4 KUNCI JAWABAN SOAL PILIHAN GANDA ? B

5 KUNCI JAWABAN SOAL PILIHAN GANDA ? B

6 KUNCI JAWABAN SOAL PILIHAN GANDA 1 3 y x ? B

7 KUNCI JAWABAN SOAL PILIHAN GANDA ? y x -3 C (-1,-4)

8 KUNCI JAWABAN SOAL PILIHAN GANDA ? B

9 KUNCI JAWABAN SOAL PILIHAN GANDA ? E

10 KUNCI JAWABAN SOAL PILIHAN GANDA ? D

SOAL-SOAL LATIHAN PK D Kuncinya

SOAL-SOAL LATIHAN PK C Kuncinya

SOAL-SOAL LATIHAN PK

SOAL-SOAL LATIHAN PK E Kuncinya

SOAL-SOAL LATIHAN PK

SOAL-SOAL LATIHAN PK

SOAL-SOAL LATIHAN PK

SOAL-SOAL LATIHAN PK C Kuncinya

SOAL-SOAL LATIHAN PK

SOAL PERSAMAAN DAN FUNGSI KUADRAT&PERTIDAKSAMAAN Kunci

SOAL PERSAMAAN DAN FUNGSI KUADRAT&PERTIDAKSAMAAN Kunci

SOAL PERSAMAAN DAN FUNGSI KUADRAT&PERTIDAKSAMAAN Kunci

SOAL PERSAMAAN DAN FUNGSI KUADRAT&PERTIDAKSAMAAN Kunci

SOAL PERSAMAAN DAN FUNGSI KUADRAT&PERTIDAKSAMAAN Kunci