Work and Energy (Kerja dan Energi)

Slides:



Advertisements
Presentasi serupa
I Made Gatot Karohika, ST. MT. Mechanical Engineering
Advertisements

SOAL-SOAL RESPONSI 6 TIM PENGAJAR FISIKA.
Kerja. Work (physics) is magnitude of force in direction of displacement times distances.
Mekanika Teknik III (Strength of Materials)
FISIKA TERMAL BAGIAN 2.
1. Mass of an object is a measure of the inertia of the object. Inertia is the tendency of a body at rest to remain atrest, and a body in motion to continue.
Energi Potensial Listrik dan Potensial Listrik
Learning Medium School : SMPN 1 Gotham City Subject : English
KULIAH I MEKANIKA TEKNIK PENDAHULUAN
Physics 111: Lecture 10, Pg 1 Physics 111: Lecture 10 Today’s Agenda l Review of Work l Work done by gravity near the Earth’s surface l Examples: çpendulum,
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
Rumus-rumus ini masihkah anda ingat?
GERAK LURUS.
BAGIAN III Lapisan Data Link.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Medan Listrik (Electric fields)
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Mekanisme Pasar Permintaan dan Penawaran
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
Masalah Transportasi II (Transportation Problem II)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
Comparative Statics Slutsky Equation
1 CTC 450 ► Bernoulli’s Equation ► EGL/HGL. Bernoulli’s Equation 2
Thermodinamika FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
Mekanika Fluida Minggu 04
MEKANIKA TEKNIK TI KESEIMBANGAN BENDA TEGAR
PENGANTAR EKONOMI WILAYAH DAN KOTA
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
HUKUM AMPERE.
EKO NURSULISTIYO USAHA DAN ENERGI.
Berkelas.
Proses astrofisika i SENSITIVITY TO INITIAL CONDITIONS
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
USAHA DAN ENERGI.
Lecture 7 Thermodynamic Cycles
Creatif by : Nurlia Enda
Nama : Muhammad Shidqi Barin NIM :
1. Photoelectric effect photon K A V Potentiometer electron
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
FISIKA DASAR Pertemuan ke-3 Mukhtar Effendi.
VECTOR VECTOR IN PLANE.
Physics lesson.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
Kelompok 6 Nurlia Enda Hariza NiMade Mahas
REAL NUMBERS EKSPONENT NUMBERS.
Open and Closed Social Stratification
Refleksi From high speed to low speed (low density to high density)
Energi Kinetik dan Usaha
M E K A N I K A.
Institut Teknologi Adhi Tama Surabaya (ITATS)
Pertemuan #1 The Sentence
ELASTIC PROPERTIS OF MATERIAL
How Can I Be A Driver of The Month as I Am Working for Uber?
Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Usaha dan Energi (Work and Energy)
FORCES. A force is an influence on a system or object which, acting alone, will cause the motion of the system or object to change. If a system or object.
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Hukum Konservasi Muatan dan energi.
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
By Group 5. Once upon a time a lion was roaming in the jungle in search of a prey. Luckily, he saw a rabbit sleeping fast under a tree. He was delighted.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Work and Energy (Kerja dan Energi) © 2014 Pearson Education, Inc.

Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction of displacement (Usaha yang dilakukan oleh gaya konstan didefinisikan sebagai jarak pindah dikalikan dengan komponen gaya dalam arah perpindahan) In the SI system, the units of work are joules: 1 J = 1 Nm

Work Done by a Constant Force As long as this person does not lift or lower the bag of groceries, he is doing no work on it. The force he exerts has no component in the direction of motion (Selama orang ini tidak mengangkat atau menurunkan tas belanjaan, ia tidak melakukan kerja atasnya. Gaya diberikannya tidak memiliki komponen dalam arah gerakan).

Work Done by a Varying Force For a force that varies, the work can be approximated by dividing the distance up into small pieces, finding the work done during each, and adding them up. As the pieces become very narrow, the work done is the area under the force vs. distance curve (Untuk gaya yang bervariasi, kerja dapat didekati dengan membagi jarak menjadi potongan-potongan kecil, menemukan kerja yang dilakukan masing-masing, dan menambahkan mereka. Bilamana bagian menjadi sangat sempit, kerja yang dilakukan adalah daerah di bawah kurva gaya vs. Jarak).

Kinetic Energy and the Work-Energy Principle Energy was traditionally defined as the ability to do work (Energi secara tradisional didefinisikan sebagai kemampuan untuk melakukan kerja). We now know that not all forces are able to do work. However, we are dealing in these chapters with mechanical energy, which does follow this definition (Kita sekarang tahu bahwa tidak semua gaya mampu melakukan kerja. Namun, kita berhadapan dalam bab ini dengan energi mekanik, yang tidak mengikuti definisi ini).

Kinetic Energy and the Work-Energy Principle If we write the acceleration in terms of the velocity and the distance, we find that the work done here is (Jika kita menulis percepatan dalam kecepatan dan jarak, kita menemukan bahwa kerja yang dilakukan di sini adalah) : We define the kinetic energy (kita mendefinsikan energi kinetik):

Work Done by a Constant Force This means that the work done is equal to the change in the kinetic energy (Ini berarti bahwa kerja yang dilakukan sama dengan perubahan energi kinetik): If the net work is positive, the kinetic energy increases (Jika kerja total adalah positif, energi kinetik neningkat). If the net work is negative, the kinetic energy decreases (Jika kerja total adalah negatif, energi kinetik berkurang).

Potential Energy An object can have potential energy by virtue of its surroundings. Familiar examples of potential energy: A wound-up spring A stretched elastic band An object at some height above the ground

Potential Energy In raising a mass m to a height h, the work done by the external force is (Dalam mengangkat massa m ke ketinggian h, kerja yang dilakukan oleh gaya eksternal adalah) : We therefore define the gravi-tational potential energy (Oleh karena itu, kita mendefinisikan energi potensial gravitasi):

Potential Energy Potential energy can also be stored in a spring when it is compressed; the figure below shows potential energy yielding kinetic energy (Energi potensial juga dapat disimpan di pegas ketika dikompresi. Gambar di bawah ini menunjukkan energi potensial pegas menghasilkan energi kinetik).

Potential Energy The force required to compress or stretch a spring is (Gaya yang dibutuhkan untuk mengkompresi atau meregangkan pegas adalah): where k is called the spring constant, and needs to be measured for each spring (di mana k disebut konstanta pegas, dan perlu diukur untuk setiap pegas).

Potential Energy The force increases as the spring is stretched or compressed further. We find that the potential energy of the compressed or stretched spring, measured from its equilibrium position, can be written (Gaya meningkat manakala pegas diregangkan atau dikompresi. Kita mendapatkan bahwa energi potensial pegas dikompresi atau diregangkan, diukur dari posisi keseimbangannya, dapat ditulis) :

Mechanical Energy and Its Conservation If there are no nonconservative forces, the sum of the changes in the kinetic energy and in the potential energy is zero, the kinetic and potential energy changes are equal but opposite in sign. This allows us to define the total mechanical energy (Jika tidak ada gaya nonkonservatif, jumlah perubahan energi kinetik dan energi potensial adalah nol. Perubahan energi kinetik dan potensial adalah sama tetapi berlawanan tanda. Hal ini memungkinkan kita mendefisikan energi mekanik total: E = KE + PE

Problem Solving Using Conservation of Mechanical Energy In the image on the left, the total mechanical energy is: The energy buckets on the right of the figure show how the energy moves from all potential to all kinetic.

Contoh soal: Kerja pada ransel: (a) Tentukan kerja yang harus dilakukan seorang pejalan kaki pada sebuah ransel dengan massa 15,0 kg untuk membawanya mendaki bukit dengan ketinggian h=10,0 m, sebagaimana ditunjukkan pada gambar. (b) Tetukan juga kerja yang dilakukan gravitasi pada ransel. Untuk mudahnya, anggap gerakan berjalan lancar dan dengan kecepatan konstan (besar kecepatan kecil sekali).

Contoh soal: (a) (b)

Contoh soal: Roller-coaster melaju dengan menggunakan kekekalan energi. Dengan menganggap ketinggian bukit pada gambar adalah 40 m, dan roller-coaster mulai dari keadaan diam, hitung (a) laju roller-coaster di kaki bukit, dan (b) pada ketinggi berapa lajunya akan menjadi setengahnya.

Contoh Soal: Seekor Belalang melopat dengan sudut lompatan 450 di atas horizontal dan mencapai ketinggian maksimum 1,0 m dalam lompatannya. Berapa kecepatan awal vi belalang tersebut ketika lepas dari permukaan tanah? (Selesaikan dengan konsep energi)