FUZZY INFERENCE SYSTEM (FIS) - MAMDANI

Slides:



Advertisements
Presentasi serupa
<Artificial intelligence>
Advertisements

Contoh Kasus Fuzzy dalam menentukan Jumlah Produksi Barang berdasarkan Jumlah Permintaan konsumen dan Jumlah Barang yang tersedia di gudang.
SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2011
Bahan Kuliah IF4058 Topik Khusus IF
Sistem Inferensi Fuzzy
FUZZY INFERENCE SYSTEMS
Kecerdasan Buatan Sepak bola pragmatis Dengan Teori Algoritma fuzzy
SISTEM PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PENERIMAAN BEASISWA BAGI MAHASISWA BERBASIS LOGIKA FUZZY ADE SYAYUTI MANNAF K
FUZZY INFERENCE SYSTEMS
LOGIKA FUZZY Kelompok Rhio Bagus P Ishak Yusuf
LOGIKA FUZZY PERTEMUAN 3.
Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System
Fuzzy Clustering Logika Fuzzy Materi Kuliah Prodi Teknik Informatika
LOGIKA FUZZY .
CONTOH PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno
FUZZY LOGIC LANJUTAN.
Kuliah Sistem Fuzzy Pertemuan 5 “Sistem Inferensi Fuzzy”
Intelligent Control System (Fuzzy Control)
Model Fuzzy Tsukamoto.
Logika fuzzy.
KECERDASAN BUATAN LOGIKA FUZZY (Fuzzy Logic) Edy Mulyanto.
LOGIKA FUZZY (Lanjutan)
Kode MK :TIF , MK : Fuzzy Logic
LOGIKA FUZZY Oleh I Joko Dewanto
LOGIKA FUZZY ABDULAH PERDAMAIAN
FUZZY INFERENCE SYSTEMS
FUZZY INFERENCE SYSTEMS
Model Fuzzy Mamdani.
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
KECERDASAN BUATAN (Artificial Intelligence) Materi 5
CARA KERJA SISTEM PAKAR
Logika Fuzzy.
FUZZY TSUKAMOTO UTHIE.
Sistem Inferensi Fuzzy
REASONING FUZZY SYSTEMS.
FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS)
Kode MK : TIF01405; MK : Kecerdasan Buatan
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
FUZZY SIMPLE ADDITIVE WEIGHTING (FSAW)
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
<KECERDASAN BUATAN>
Fuzzy logic Fuzzy Logic Disusun oleh: Tri Nurwati.
DASAR FUZZY.
LATIHAN 1 (kelompok 1 – 3) Permintaan terbesar 6000 kemasan/hari, permintaan terkecil 2000 kemasan/hari Persediaan barang digudang terbanyak mencapai 700.
Penggunaan Toolbox Matlab menyelesaikan kasus sistem uzzy
LOGIKA FUZZY Dosen Pengampu : Dian Tri Wiyanti, S.Si, M.Cs
Oleh : Yusuf Nurrachman, ST, MMSI
Perhitungan Membership
METODE FIS Pertemuan Ke-5.
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
Penyusun: Tri Nurwati (dari segala sumber :)
HEMDANI RAHENDRA HERLIANTO
Sistem Inferensi Fuzzy
Operasi Himpunan Fuzzy
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Rusmala, S.Kom., M.Kom Pertemuan 9, 10, 11
Sistem Pakar teknik elektro fti unissula
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
METODE FIS Pertemuan Ke-5.
FUZZY TSUKAMOTO UTHIE.
CCM110 Matematika Diskrit Pertemuan-11, Fuzzy Inference System
Logika Fuzzy (Fuzzy Inference System)
Fuzzy Expert Systems.
Penalaran Logika Fuzzy
FUZZY TSUKAMOTO UTHIE.
Operator Himpunan Fuzzy
Logika Fuzzy Dr. Mesterjon,S.Kom, M.Kom.
LOGIKA FUZZY. Definisi Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika klasik menyatakan.
Transcript presentasi:

FUZZY INFERENCE SYSTEM (FIS) - MAMDANI 17/9/2015 Kode MK :TIF ........, MK : Fuzzy Logic

Kode MK :TIF ........, MK : Fuzzy Logic OUTLINE Metode FIS Mamdani Langkah-langkah FIS-Mamdani Fungsi Implikasi Contoh FIS-Mamdani 17/9/2015 Kode MK :TIF ........, MK : Fuzzy Logic

METODE FIS - MAMDANI Metode Mamdani sering juga dikenal dengan nama Metode Max-Min. Menggunakan MIN pada fungsi implikasi, dan MAX pada komposisi antar fungsi implikasi. Diperkenalkan oleh Ebrahim Mamdani pada tahun 1975 11/08/2011 Fuzzy logic

LANGKAH-LANGKAH FIS - MAMDANI Tentukan variabel-variabel & himpunan fuzzy; Tentukan fungsi keanggotaan; Lakukan implementasi fungsi implikasi; Lakukan komposisi/agregasi aturan; Lakukan proses penegasan (defuzzy) Model Inferensi 11/08/2011 Fuzzy logic

FUNGSI IMPLIKASI Min (minimum) Dot (product) 16/12/2010 Fuzzy logic

METODE KOMPOSISI Metode Max Metode Additive Metode Probabilistik OR (PROBOR) 16/12/2010 Fuzzy logic

PENEGASAN (DEFUZZY) Input dari proses defuzzifikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan-aturan fuzzy. Sedangkan output yang dihasilkan merupakan suatu bilangan pada domain himpunan fuzzy tersebut. Jika diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat diambil suatu nilai crsip tertentu sebagai output 16/12/2010 Fuzzy logic

16/12/2010 Fuzzy logic

CONTOH FIS-MAMDANI Suatu perusahaan soft drink akan memproduksi minuman jenis X. Pada 3 bulan terakhir biaya produksi untuk minuman jenis tersebut rata-rata sekitar Rp 500,- per kemasan, dan maksimum mencapai Rp 1000,- per kemasan. Banyaknya permintaan per hari rata-rata mencapai 30000 kemasan dan maksimum hingga mencapai 60000 kemasan. Sampai saat ini, perusahaan baru mampu memproduksi barang maksimum 100000 kemasan per hari. 16/12/2010 Fuzzy logic

Apabila proses produksi perusahaan tersebut menggunakan 3 aturan fuzzy sbb: [R1] IF Biaya Produksi RENDAH And Permintaan NAIK THEN Produksi Barang BERTAMBAH; [R2] IF Biaya Produksi sesuai STANDAR THEN Produksi Barang NORMAL; [R3] IF Biaya Produksi TINGGI And Permintaan TURUN THEN Produksi Barang BERKURANG; Berapa jumlah minuman jenis X yang harus diproduksi, jika biaya untuk memproduksi jenis minuman tersebut diperkirakan sejumlah Rp 800 per kemasan, dan permintaannya diperkirakan mencapai 25000 kemasan per hari. 16/12/2010 Fuzzy logic