Presentasi Statistika Dasar

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Advertisements

Pengujian Hipotesis (Satu Sampel)
Kelompok 1 - 2A Sekolah Tinggi Ilmu Statistik
Uji Hipotesis Dua Populasi
UJI t INDEPENDEN.
Love comes to those who still hope although they’ve been disappointed,to those who still believe although they’ve been betrayed,to those who still love.
Pengujian Hipotesis.
DOSEN : LIES ROSARIA., ST., MSI
BUDIYONO Program Pascasarjana UNS
Praktikum Metode Statistika II
BUDIYONO Program Pascasarjana UNS
Ruang Contoh dan Peluang Pertemuan 05
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
PENDUGAAN PARAMETER Pertemuan 7
The first reason Sebab yang pertama. skills ketrampilan.
Uji Goodness of Fit : Distribusi Multinomial
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
Expectation Maximization. Coin flipping experiment  Diberikan koin A dan B dengan nilai bias A dan B yang belum diketahui  Koin A akan memunculkan head.
UJI BEDA DUA MEAN (T-Test Independent)
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
THE GUIDANCE OF PASSING THE TEST
DIAN PERTIWI
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
Menyelesaikan Masalah Program Linear
Uji Goodness of Fit : Distribusi Multinomial
Pengujian Hipotesis Aria Gusti.
Statistika Chapter 4 Probability.
Analisis ragam atau analysis of variance
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
STATISTIKA Pertemuan 7: Pengujian Hipotesis 1 Populasi
Uji Hipotesis Dua Sampel
Pertemuan 25 Uji Kesamaan Proporsi
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
The first reason Sebab yang pertama.
Review Operasi Matriks
PENDUGAAN PARAMETER Pertemuan 8
Significantly Significant
UJI t UNTUK SATU SAMPEL Oleh: kelompok 2 Mahfud Sirojudin
t(ea) for Two Tests Between the Means of Different Groups
BILANGAN REAL BILANGAN BERPANGKAT.
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
ANOVA (Analysis of Variance)
STATISTIK II Pertemuan 13: Pengujian Hipotesis Sampel Kecil (n<30)
Uji Kesamaan Proporsi dan Uji Kebebasan Pertemuan 24
Pertemuan 09 Pengujian Hipotesis 2
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Eksperimen Satu Faktor: (Disain RAL)
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
STATISTIK “Hypothesis Testing”
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
TWO SAMPLE TEST OF HYPOTHESIS
Metode Statistik Metode Statistik Statistik Statistik Deskriptif
Looks of Our Interior Designs. Hire Perfect Singapore Interior Designer Interior design can make your home look remarkable. It is somewhat that needs.
Don’t Forget to Avail the Timely Offers with Uber
Paulina Ade Cahyanti STATISTIKA DASAR.
KULIAH KE SEMBILAN Elementary Statistics Eleventh Edition
KULIAH KE 9 Elementary Statistics Eleventh Edition
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
MAKING A CONCLUSION AND RECOMMENDATION
© presentationgo.compresentationgo.com By:.com BEKASI FUTSAL CORNER Yohannes Christiando
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Transcript presentasi:

Presentasi Statistika Dasar

Agatha Puteri Vitria Wahyuningsih Fisika / 642016009 Hello! Agatha Puteri Vitria Wahyuningsih Fisika / 642016009

1 Menguraikan

Diketahui: μ = mean ( Ho : μ = 20 Ha : μ > 20 t = 3.2 n = 15 PEMBAHASAN SOAL NO 17 Diketahui: μ = mean ( Ho : μ = 20 Ha : μ > 20 t = 3.2 n = 15 Ditanya: Conclusion of the significance levels for a. α = .05 b. α = .01 c. α = .001

2 Jawaban

PEMBAHASAN SOAL NO 17 a. α = .05 t100%-5%;15-1 = qt (0.95,14) t100%-5%;15-1 = 1.76131 b. α = .01 t100%-1%;15-1 = qt (0.99,14) t100%-1%;15-1 = 2.624494 c. α = .001 t100%-0.1;15-1 = qt (0.999,14) t100%-0.1;15-1 = 3.78739 Menggunakan uji hipotesis langsung (one tail) dengan distribusi tabel t

PEMBAHASAN SOAL NO 17

3 Kesimpulan

H0  ditolak Ha  diterima b. 3.2 > 2.6... PEMBAHASAN SOAL NO 17 a. 3.2 > 1.7... H0  ditolak Ha  diterima b. 3.2 > 2.6... c. 3.2 > 3.7... H0  diterima Ha  ditolak

PEMBAHASAN SOAL NO 17 To find the answer, you need to find the probability. The T distribution gives you the probability of something greater occurring, the upper tail area. Since the Ha is >, we can simply use the value we find. The degrees of freedom (df) of a t test is found by taking the number in the sample -1. so 15-1=14. Look up the number 3.2 in the 14 df row, and you get some number between .05 and .01. You dont get a straight answer, but you can see both of these are greater then the significance level of .001, so you cannot reject the null.  Therefore your conclusion would be that you cannot say the reflectometer reading average is equal to or greater then 20. Your results show that the data is not statistically significant.

Thank You