HIMPUNAN MATEMATIKA EKONOMI 1
Ruang Lingkup Pengertian Himpunan Penyajian Himpunan Himpunan Universal dan Himpunan Kosong Operasi Himpunan Kaidah Matematika dalam Operasi Himpunan
Pengertian Himpunan Himpunan : Suatu kumpulan atau gugusan dari sejumlah obyek. Secara umum himpunan dilambangkan A, B, C, ...... Z Obyek dilambangkan a, b, c, ..... z Notasi : - p A p anggota A - A B A himpunan bagian dari B - A = B himpunan A sama dengan B - = ingkaran ∩ ∩ ∩ ∩
Penyajian Himpunan Penyajian Himpunan cara daftar A = {1,2,3,4,5} berarti: himpunan A beranggotakan bilangan- bilangan bulat positif 1,2,3,4, dan 5. cara kaidah A = {x; 0 < x < 6} berarti: himpunan A beranggotakan obyek x, dimana x adalah bilangan-bilangan bulat positif yang lebih besar dari nol tetapi lebih kecil dari enam.
Himpunan semesta (universal set) Notasi: U atau S Untuk membatasi himpunan yang dibicarakan Setiap himpunan yang dibicarakan selalu ada dalam himpunan semesta Contoh: Misalkan U = {1, 2, 3, 4, 5} A dan B adalah himpunan bagian dari U, dengan A = {1, 3, 5} dan B = {2, 3, 4}
Himpunan Bagian (Subset)
Himpunan kosong (null set) Himpunan dengan kardinal = 0 disebut himpunan kosong (null set). Notasi : atau {{ }} Contoh (i) Himpunan bilangan genap yang ganjil (ii) E = { x | x < x }, maka n(E) = 0 (iii) P = { orang Indonesia yang pernah ke bulan }, maka n(P) = 0 (iv) A = {x | x adalah akar persamaan kuadrat x2 + 1 = 0 }, n(A) = 0 Himpunan {{ }} dapat juga ditulis sebagai {} Himpunan {{ }, {{ }}} dapat juga ditulis sebagai {, {}} {} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.
Operasi Himpunan Irisan (Intersection) A ∩ B = {x; x Є A dan x Є B} Gabungan (Union) A U B = {x; x Є A atau x Є B} Selisih A - B = A|B {x; x Є A tetapi x Є B} Pelengkap (Complement) Ā = {x; x Є U tetapi x Є A} = U – A
Diagram Venn Contoh Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn:
Diagram Venn Gabungan ( A U B ) U B A Irisan U A B
Lanjutan ........ Selisih ( A – B = A|B ) A B Pelengkap / complement ( Ā ) A U B
Operasi Terhadap Himpunan
Kaidah-kaidah Matematika dalam Pengoperasian Himpunan Kaidah Idempoten A U A = A b. A ∩ A = A Kaidah Asosiatif ( A U B ) U C = A U ( B U C ) b. ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) Kaidah Komutatif A U B = B U A b. A ∩ B = B ∩ A Kaidah Distributif a. A U ( B ∩ C ) = ( A U B ) ∩ ( A U C ) b. A ∩ ( B U C ) = ( A ∩ B ) U ( A ∩ C )
Lanjutan ............ Kaidah Identitas a. A U Ø = A b. A ∩ Ø = Ø c. A U U = U d. A ∩ U = A Kaidah Kelengkapan a. A U Ā = U b. A ∩ Ā= Ø c. ( Ā ) = A d. U = Ø Ø = U Kaidah De Morgan a. (A U B)= Ā ∩ B b. (A ∩ B) = Ā U B
Latihan A = {2,3,5,7} B = {1,3,4,7,8 } Kemudian selesaikan : Gambarkan sebuah diagram venn untuk menunjukkan himpunan universal U dan himpunan-himpunan bagian A serta B jika : U = {1,2,3,4,5,6,7,8 } A = {2,3,5,7} B = {1,3,4,7,8 } Kemudian selesaikan : (a) A – B (c) A ∩ B (e) Ā ∩ B (b) B – A (d) A U B (f) Ā U B