Matematika Diskrit (1) Himpunan.

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
BAB II HIMPUNAN.
Pertemuan I-III Himpunan (set)
Waniwatining II. HIMPUNAN 1. Definisi
Himpunan.
MATEMATIKA BISNIS HIMPUNAN.
Matematika Informatika 1
Bahan kuliah IF2120 Matematika Diskrit
KONSEP DAN OPERASI HIMPUNAN
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
BAB II HIMPUNAN.
Logika Matematika Teori Himpunan
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
HIMPUNAN Rani Rotul Muhima.
Pertemuan ke 4.
HIMPUNAN.
Bahan kuliah Matematika Diskrit
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
LOGIKA MATEMATIKA PERTEMUAN 1 HIMPUNAN I
Logika Matematika Teori Himpunan
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
BAB 1 Himpunan
BAB II HIMPUNAN.
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
Disusun Oleh: Novi Mega S
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Teori Himpunan (Set Theory)
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
Himpunan (Lanjutan).
KALKULUS Betha Nurina Sari,S.Kom.
HIMPUNAN.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI UT HIMPUNAN dan SISTEM BILANGAN.
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
PENDAHULUAN : ALJABAR ABSTRAK
MATEMATIKA EKONOMI HIMPUNAN dan SISTEM BILANGAN Ir Tito Adi Dewanto.
Logika Matematika Teori Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
Himpunan.
Logika Matematika Teori Himpunan
Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn.
01 LOGIKA MATEMATIKA Penyajian Himpunan,operasi-operasi dasar himpunan
Logika Matematika Himpunan Sri Nurhayati.
Dasar Logika Matematika
BAB 1 Himpunan
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Matematika Diskrit (1) Himpunan

Pengertian Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota

Penyajian Himpunan Himpunan dituliskan atau dinyatakan dengan notasi { } dan anggota-anggotanya di tulis di dalam kurung kurawal tersebut. Nama suatu himpunan ditulis dengan huruf besar seperti A, B, C, …, X, Y, Z

Penyajian Himpunan (2) Beberapa cara yang digunakan untuk menyajikan himpunan Cara Tabulasi (Roster Method/enumerasi) Cara Pencirian (Rule Method/Notasi pembentuk himpunan) Simbol-simbol Baku Diagram Venn

1 Roster Method/enumerasi Adalah suatu cara dengan mencantumkan seluruh obyek yang menjadi anggota suatu himpunan. Contoh X = { a, b, c} Y = { sisi gambar, sisi angka} Z = { 1,2,3,4,5,6 }

2 Rule Method/ Notasi pembentuk himpunan Adalah suatu cara dengan menyebutkan karakteristik tertentu dari obyek yang menjadi anggota himpunan tersebut. Cara Penulisan Notasi :{x|syarat yang harus dipenuhi oleh x} Contoh A = {x|x  P, x<5}

3 Simbol-Simbol Baku Terdapat sejumlah simbol baku yang biasa digunakan untuk mendefinisikan himpunan yang sering digunakan, antara lain: P = himpunan bilangan bulat positif = {1,2,3,...} N = himpunan bilangan asli= {1,2,...} Z = himpunan bilangan bulat = {...,-2,- 1,0,1,2,...} Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks

4 Diagram Venn Diagram Venn menyajikan himpunan secara grafis. Cara penyajian himpunan ini diperkenalkan oleh matematikawan Inggris yang bernama John Venn pada tahun 1881. di dalam diagram Venn, himpunan semesta (U) digambarkan sebagai suatu segi empat sedangkan himpunan lainnya digambarkan sebagai lingkaran di dalam segi empat tersebut

4 Diagram Venn (2) Contoh Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}.

Kardinalitas Jumlah elemen di dalam suatu himpunan disebut kardinal Notasi: n(A) atau A  Contoh B = { x | x merupakan bilangan prima yang lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 T = {kucing, a, Amir, 10, paku}, maka T = 5 A = {a, {a}, {{a}} }, maka A = 3

Himpunan Kosong Himpunan dengan kardinal = 0 disebut himpunan kosong (null set). Notasi :  atau {} himpunan {{ }} dapat juga ditulis sebagai {} himpunan {{ }, {{ }}} dapat juga ditulis sebagai {, {}} {} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong. Contoh E = { x | x < x }, maka n(E) = 0 P = { orang Indonesia yang pernah ke bulan }, maka n(P) = 0

Himpunan Bagian (Subset) Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. Dalam hal ini, B dikatakan superset dari A. Notasi: A  B Diagram Venn:

Himpunan Bagian (Subset) (2) Untuk sembarang himpunan A berlaku hal- hal sebagai berikut: A adalah himpunan bagian dari A itu sendiri (yaitu, A  A). Himpunan kosong merupakan himpunan bagian dari A (  A). Jika A  B dan B  C, maka A  C

Himpunan Bagian (Subset) (3)   A dan A  A, maka dan A disebut himpunan bagian tak sebenarnya (improper subset) dari himpunan A. Contoh: A = {1, 2, 3}, maka {1, 2, 3} dan  adalah improper subset dari A.   A  B berbeda dengan A  B A  B : A adalah himpunan bagian dari B tetapi A  B. A adalah himpunan bagian sebenarnya (proper subset) dari B. Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3} A  B : digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.  

Himpunan yang Sama A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A. A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian  Notasi : A = B  A  B dan B  A Contoh Jika A = { 0, 1 } dan B = { x | x (x – 1) = 0 }, maka A = B Jika A = { 3, 5, 8, 5 } dan B = {5, 3, 8 }, maka A = B

Himpunan yang Ekivalen Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.  Notasi : A ~ B  A = B Contoh Misalkan A = { 1, 3, 5, 7 } dan B = { a, b, c, d }, maka A ~ B sebab A = B = 4

Himpunan Saling Lepas Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama.  Notasi : A // B   Diagram Venn: Contoh Jika A = { x | x P, x < 8 } dan B = { 10, 20, 30, ... }, maka A // B.

Himpunan Kuasa Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri Notasi : P(A) atau 2A  Jika A = n, maka P (A) = 2n.   Contoh Jika A = { 1, 2 }, maka P(A)= {, { 1 }, { 2 }, {1, 2 }} Himpunan kuasa dari himpunan kosong adalah P() = {}, dan himpunan kuasa dari himpunan {} adalah P({}) = {, {}}.

Operasi Terhadap Himpunan Irisan (intersection)...(1) Notasi : A  B = { x  x  A dan x  B }   Contoh Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A  B = {4, 10} Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A  B =  . Artinya: A // B

Operasi Terhadap Himpunan Gabungan (union)...(2)  Notasi : A  B = { x  x  A atau x  B }   Contoh Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A  B = { 2, 5, 7, 8, 22 } A   = A

Operasi Terhadap Himpunan Komplemen (complement)...(3)  Notasi : = { x  x  U, x  A }   Contoh Misalkan U = { 1, 2, 3, ..., 9 }, jika A = {1, 3, 7, 9}, maka = {2, 4, 6, 8} jika A = { x | x/2 P, x < 9 }, maka = { 1, 3, 5, 7, 9 }

Operasi Terhadap Himpunan Selisih (difference)...(4)  Notasi : A – B = { x  x  A dan x  B } = A    Contoh Jika A = { 1, 2, 3, ..., 10 } dan B = { 2, 4, 6, 8, 10 }, maka A – B = { 1, 3, 5, 7, 9 } dan B – A =  {1, 3, 5} – {1, 2, 3} = {5}, tetapi {1, 2, 3} – {1, 3, 5} = {2}

Operasi Terhadap Himpunan Beda Setangkup (Symmetric Difference)...(5)  Notasi: A  B = (A  B) – (A  B) = (A – B)  (B – A)   Contoh Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A B = { 3, 4, 5, 6 } Beda setangkup memenuhi sifat-sifat berikut: (a) A  B = B  A (hukum komutatif) (b) (A  B )  C = A  (B  C ) (hukum asosiatif)

Operasi Terhadap Himpunan Perkalian Kartesian (cartesian product)...(6)  Notasi: A  B = {(a, b)  a  A dan b  B }   Contoh Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C  D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } Catatan Jika A dan B merupakan himpunan berhingga, maka: A  B = A . B. Pasangan berurutan (a, b) berbeda dengan (b, a), dengan kata lain (a, b)  (b, a). Perkalian kartesian tidak komutatif, yaitu A  B  B  A dengan syarat A atau B tidak kosong Jika A =  atau B = , maka A  B = B  A = 

Hukum-hukum Himpunan Hukum-hukum Himpunan