Two-and Three-Dimentional Motion (Kinematic)

Slides:



Advertisements
Presentasi serupa
SOAL-SOAL RESPONSI 6 TIM PENGAJAR FISIKA.
Advertisements

Kerja. Work (physics) is magnitude of force in direction of displacement times distances.
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
Cartesian Coordinate System
FISIKA TERMAL BAGIAN 2.
1. Mass of an object is a measure of the inertia of the object. Inertia is the tendency of a body at rest to remain atrest, and a body in motion to continue.
PHYSICS AND SYSTEM UNITS AMOUNT
KULIAH I MEKANIKA TEKNIK PENDAHULUAN
Teorema Green.
Rumus-rumus ini masihkah anda ingat?
GERAK LURUS.
Edge Detection (Pendeteksian Tepi)
MEDIA PEMBELAJARAN FISIKA
Proses Stokastik Semester Ganjil 2013/2014
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
Mekanika Fluida Minggu 04
IRISAN KERUCUT PERSAMAAN LINGKARAN.
VEKTOR VEKTOR PADA BIDANG.
HUKUM AMPERE.
Recurrence relations.
GEOMETRI SUDUT DAN BIDANG.
MAGNETIC FIELD AND ELEKTROMAGNETIC INDUCTION
Proses astrofisika i SENSITIVITY TO INITIAL CONDITIONS
KOMUNIKASI DATA Materi Pertemuan 2.
Cartesian coordinates in two dimensions
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Cartesian coordinates in two dimensions
Creatif by : Nurlia Enda
Nama : Muhammad Shidqi Barin NIM :
1. Photoelectric effect photon K A V Potentiometer electron
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
MAGNETIC FIELD AND ELEKTROMAGNETIC INDUCTION
Mole Concept For Technological And Agriculture
Work and Energy (Kerja dan Energi)
FISIKA DASAR Pertemuan ke-3 Mukhtar Effendi.
Parabola Parabola.
CLASS X SEMESTER 2 SMKN 7 BANDUNG
VECTOR VECTOR IN PLANE.
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng.
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 5.
Kelompok 6 Nurlia Enda Hariza NiMade Mahas
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
FACTORING ALGEBRAIC EXPRESSIONS
3rd Semester VECTOR ANALYSIS
GERAK DALAM DUA DIMENSI (BIDANG DATAR)
Pada tahun 1897 : menunjukkan sinar katoda merupakan elektron,
6. APLIKASI PRINSIP EKONOMI DALAM BISNIS; PRODUKSI
ELASTIC PROPERTIS OF MATERIAL
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Physics Quantities Vector Quanties Scalar Quantities Consist of.
Magnitude and Vector Physics 1 By : Farev Mochamad Ihromi / 010
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Design And Production of it based Learning Media Lecturer: Prof.Dr.Sahyar.MS.MM.
FORCES. A force is an influence on a system or object which, acting alone, will cause the motion of the system or object to change. If a system or object.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Poynting’s Theorem Beberapa Contoh.
Kelompok 13 Nama Anggota : Sigit Dwi Prianto Praditya F Marliyana.
Transcript presentasi:

Two-and Three-Dimentional Motion (Kinematic)

Position Vector y C The location of a particle relative to the origin of a coordinate system is given by a position vector r , which in unit – vector notation is A B x D Student Activity : State position points A, B, C, D using unit-vector notation.

Position as a function of time Example : Student Activity : Determine position of a particle that has function of time as stete above at : a. Initially b. t = 2 second c. t = 4 second

Displacement If a particle moves so that its position vector changes from to , the particle’s displacement is The displacement can also be written as :

Student Activity : Determine the displacement vector : From point A to point C b. From point A to point B The magnitude of displacement : y C A The direction of displacement is tate in angle : B x D

Student Activity Suppose the position vector of a particle is given by : t is in second and r in meter. Determine the magnitude and direction of particle displacement from t1 = 1 s to t2 = 2 s

Average Velocity If a particle undergoes a displacement in time interval , its average velocity for that time interval is : The magnitude of average velocity is : Direction of average velocity is :

Student Activity A particle is moving on an x-y coordinat plane. The change of particle position follows the equation : Where t is in second and r is in meter. Determine : Vector of average velocity if particle moves from t = 0 to t = 2 s Magnitude of average velocity from t = 0 to t = 2 s c. Direction of average velocity

C C B B A A CONSTANT VELOCITY CONSTANT ACCELERATION Instantenous velocity = average velocity Instantenous velocity = average velocity

Instantaneous Velocity When Dt is shrunk to 0, reaches a limit called either the velocity or the instantaneous velocity Dr Dt

How to Calculate Instantaneous Velocity r C B2 rB1 : position when t = t rB2 : position when t = t + Dt B Dr A Or can be determine by “Deferential” function B1 Dt t Student Activity

Student Activity A particle is moving on an x-y coordinate plane. The change of particle position follows the equation Where t is in second and is in meter Determine : The vector instantaneous velocity at t = 2 s b. The magnitude and direction of instantaneous velocity at = 2 s

Kerjakan soal berikut : Vektor posisi sebuah partikel yang bergerak dinyatakan oleh : r = 40ti + (30t-5t2)j a. Tentukan kecepatan dua detik pertama b. Tentukan kecepatan mula-mula c. Tentukan kecepatan saat t = 2 s

Acceleration Average acceleration If a velocity of a particle change in time interval , its average acceleration for that time interval is : The magnitude of average acceleration is : Direction of average acceleration is : Or can be determine by “Deferential” function

Student Activity The velocity equation of a moving particle is stated by : v = 4ti + (10 + 0.75t2)j Determine the average acceleration from t = 0 to t = 2s

Acceleration Instantenous Acceleration v1 : velocity when t = t v2 : velocity when t = t + Dt Or can be determine by “Deferential” function

Student Activity A bird flying on the XY plane with velocity that is stated by : v = (2.1 – 3.6t2)i + 5.0tj. Initially the bird is on the (0;0) Determine the vector of acceleration as time function Determine the bird acceleration at t = 2s Determine the average acceleration in interval of time from t = 0 to t = 2 s

Determination velocity from acceleration equation To determine velocity from acceleration equation, we use integral function to change acceleration equation become velocity equation Integral Function to use Integral function in a simple way :

Student Activity A particle moves on the y axis with acceleration of a = 2t , if initially its velocity is 3 m/s, determine the velocity at t = 2 s t = 4 s

Determination position from velocity equation To determine position from velocity equation, we use integral function to change velocity equation become position equation Integral Function to use Integral function in a simple way :

Percepatan gerak partikel dinyatakan dengan persamaan a = 2ti + 4j, a dlm m/s2. jika mula-mula partikel beada di posisi 2i + j, dalam keadaan diam, tentukan kecepatan dan posisinya saat t = 4s.

Sebuah partikel P bergerak dengan percepatan a Sebuah partikel P bergerak dengan percepatan a. Tentukan vektor kecepatan dan vektor posisi P pada saat t. jika diketahui a = 15t2i + 8tj. Mula-mula partikel di titik asal dan sedang bergerak dengan kecepatan i + 2j

Kecepatan gerak partikel dinyatakan dalam persamaan : v = 3t2i + 4tj, mula-mula partikel berada di posisi 3j. Tentukan a. posisi partikel saat t = 3s b. percepatan partikel saat t = 2s

Selesai