KNOWLEGDE DISCOVERY in DATABASE (KDD)

Slides:



Advertisements
Presentasi serupa
KNOWLEGDE DISCOVERY in DATABASE (KDD)
Advertisements

Aplikasi Basis Data.
5.
Oleh: Achmad Zakki Falani Universitas Narotama Fakultas Ilmu Komputer
ARSITEKTUR & MODEL DATA MINING
BASIS DATA LANJUTAN.
KNOWLEDGE TRANSFER IN THE e - WORLD
Sistem Informasi Pendukung Keputusan Manajerial
Data Mining Definisi Data Mining Kemampuan Data Mining :
Data Warehouse dan Decision Support
INTRODUCTION OF DATA WAREHOUSE
Proses Data Warehouse M. Syukri Mustafa,S.Si., MMSI.
SISTEM BASIS DATA & DATA WAREHOUSE
Data Warehouse, Data Mart, OLAP, dan Data Mining
Pengenalan Data Warehouse
Pengenalan Datawarehouse
Data Warehousing Sistem Basis Data Lanjut Prepared by: MT. Wilson
M ANAJEMEN D ATA “Pengaksesan Data”. P ENDAHULUAN Selama beberapa waktu, teknologi informasi berkonsentrasi pada pembangunan sistem bermisi kritis,- sistem.
Data Resource Management
The Knowledge Discovery Process
Data Mining.
Data Warehouse dan Data Mining
Arsitektur DWH Pertemuan ke-2.
SISTEM INFORMASI Pertemuan 5.
Customer Relationship Management
Pengenalan Datawarehouse
SISTEM INFORMASI PERUSAHAAN
PENGANTAR DATA MINING.
Tahapan dan Pengelompokan Data Mining
Informasi Dalam Praktik
INTRODUCTION OF DATA WAREHOUSE
Peran dan Manfaatnya sebagai Decission Support System (DSS)
Data Warehouse dan Data Mining
Penambangan data Pertemuan 2.
CRM CRM kependekan dari Customer Relationship Management. Dalam bahasa indonesia dapat kita artikan sebagai Manajemen Hubungan Pelanggan. Merupakan strategi.
JENIS-JENIS SISTEM INFORMASI
Pengatar Sistem Penunjang Keputusan (Decision Support Sistem)
KECERDASAN BISNIS Data Warehouse, Data Mart, OLAP, dan Data Mining
Enterprise Information System (E I S)
Data Warehouse, Data Mart, OLAP, dan Data Mining
Charitas Fibriani, S.Kom, M.Eng
ARSITEKTUR DATA WAREHOUSE
BUSINESS INTELLIGENCE
KECERDASAN BISNIS (Data Warehouse, Data Mart, OLAP, dan Data Mining)
KARAKTERISTIK DW Pertemuan ke-2.
Konsep Data Warehouse Kelompok 3 :
DATA WAREHOUSE.
Aplikasi Business Intelligence & Data Mining
Business Intelligent Ramos Somya, S.Kom., M.Cs.
BUSINESS INTELLIGENCE
KELOMPOK 6 Nama Kelompok: Lulus Irmawati ( )
INTRODUCTION OF DATA WAREHOUSE
Data Warehouse Database Systems: Design, Implementation, and Management, Sixth Edition, Rob and Coronel.
INTRODUCTION OF DATA WAREHOUSE
Business Intelligent Ramos Somya, S.Kom., M.Cs.
Gudang Data, dan Permasalahannya
Introduction group DATA RESOURCE MANAGEMENT (Manajemen Sumber Daya Data) MEDICARE ( ) CANDRA NUR RAHMAN ( ) KHARISMA AGUNG ( )
Analisis Multidimensional
Pengantar Business Intelligence
PRODI MIK | FAKULTAS ILMU-ILMU KESEHATAN
Pertemuan ke-1 (GUDANG DATA)
Business Intelligence Ramos Somya, S.Kom., M.Cs.
DATABASES AND DATA WAREHOUSES
SISTEM INFORMASI MANAJEMEN
Pengantar Business Intelligence
CRM CRM kependekan dari Customer Relationship Management. Dalam bahasa indonesia dapat kita artikan sebagai Manajemen Hubungan Pelanggan. Merupakan strategi.
Sistem Informasi Pendukung Keputusan Manajerial
Business Intelligent Ramos Somya, S.Kom., M.Cs.
CRM CRM kependekan dari Customer Relationship Management. Dalam bahasa indonesia dapat kita artikan sebagai Manajemen Hubungan Pelanggan. Merupakan strategi.
CRM CRM kependekan dari Customer Relationship Management. Dalam bahasa indonesia dapat kita artikan sebagai Manajemen Hubungan Pelanggan. Merupakan strategi.
Transcript presentasi:

KNOWLEGDE DISCOVERY in DATABASE (KDD) DATA WAREHOUSE KNOWLEGDE DISCOVERY in DATABASE (KDD) Tujuan : Mahasiswa Dapat memahami konsep KDD yang merupakan tujuan akhir dari Data Warehouse dan Data Mining KDD & Data warehouse

Data Warehouse dan Data Mining KDD & Data warehouse

Data Warehouse Definisi : Tujuan : Data Warehouse adalah Pusat repositori informasi yang mampu memberikan database berorientasi subyek untuk informasi yang bersifat historis yang mendukung DSS (Decision Suport System) dan EIS (Executive Information System). Salinan dari transaksi data yang terstruktur secara spesifik pada query dan analisa. Salinan dari transaksi data yang terstruktur spesifik untuk query dan laporan Tujuan : Meningkatkan kualitas dan akurasi informasi bisnis dan mengirimkan informasi ke pemakai dalam bentuk yang dimengerti dan dapat diakses dengan mudah. KDD & Data warehouse

Empat karakteristik data warehouse Subject oriented Integrated Time variant Non-volatile KDD & Data warehouse

Empat karakteristik data warehouse Subject oriented – Data yang disusun menurut subyek berisi hanya informasi yang penting bagi pemprosesan decision support. – Database yang semua informasi yang tersimpan di kelompokkan berdasarkan subyek tertentu misalnya: pelanggan, gudang, pasar, dsb. – Semua Informasi tersebut disimpan dalam suatu sistem data warehouse. – Data-data di setiap subyek dirangkum ke dalam dimensi, misalnya : periode waktu, produk, wilayah, dsb, sehingga dapat memberikan nilai sejarah untuk bahan analisa. KDD & Data warehouse

Empat karakteristik data warehouse Integrated – Jika data terletak pada berbagai aplikasi yang terpisah dalam suatu lingkungan operasional, encoding data sering tidak seragam sehinggga bila data dipindahkan ke data warehouse maka coding akan diasumsikan sama seperti lazimnya. KDD & Data warehouse

Empat karakteristik data warehouse Time variant Data warehouse adalah tempat untuk storing data selama 5 sampai 10 tahun atau lebih, data digunakan untuk perbandingan atau perkiraan dan data ini tidak dapat diperbaharui. KDD & Data warehouse

Empat karakteristik data warehouse Non-volatile Data tidak dapat diperbaharui atau dirubah tetapi hanya dapat ditambah dan dilihat. KDD & Data warehouse

Perbedaan Data Warehouse dan Database Aplikasi DSS secara spesifik Tidak terpusat oleh user area Sebagian historical Denormalisasi besar One central subject of concern of user Sumber dari sebagian internal maupun eksternal source Tidak fleksibel, terbatas Project oriented Umurnya pendek Ukuran dari kecil menjadi besar Multi complex structure Data Warehouse Tidak terikat suatu aplikasi Data terpusat Historical Denormalisasi kecil Multiple subject Sumber dari dari semua internal maupun eksternal source Fleksibel Data oriented Umurnya panjang Ukuran besar Single complex structure KDD & Data warehouse

Konsep data warehouse KDD & Data warehouse

Langkah penerapan data warehouse KDD & Data warehouse

Proses Data warehouse KDD & Data warehouse

ARSITEKTUR DATA WAREHOUSE Pilihan berikut harus dibuat didalam perancangan data warehouse • process model Tipe apa yang akan dimodelkan? • grain Apa dasar data dan level atom data yang akan disajikan? • dimensi Dimensi apa yang dipakai untuk masing-masing record tabel fakta? • ukuran Ukuran apa yang akan mengumpulkan masing- masing record tabel fakta? KDD & Data warehouse

ARSITEKTUR DATA WAREHOUSE arsitektur dari Data Warehouse KDD & Data warehouse

ARSITEKTUR DATA WAREHOUSE KDD & Data warehouse Arsitektur Data Warehouse

OLAP (On-line analytical processing)  OLAP adalah suatu sistem atau teknologi yang dirancang untuk mendukung proses analisis kompleks dalam rangka mengungkapkan kecenderungan pasar dan faktor-faktor penting dalam bisnis  OLAP ditandai dengan kemampuannya menaikkan atau menurunkan dimensi data sehingga kita dapat menggali data sampai pada level yang sangat detail dan memperoleh pandangan yang lebih luas mengenai objek yang sedang kita analisis.  OLAP secara khusus memfokuskan pada pembuatan data agar dapat diakses pada saat pendefinisian kembali dimensi.  OLAP dapat digunakan membuat rangkuman dari multidimensi data yang berbeda, rangkuman baru dan mendapatkan respon secara online, dan memberikan view dua dimensi pada data cube multidimensi secara interaktif. KDD & Data warehouse

Perbedaan data warehouse dan data mining teknologi data warehouse digunakan untuk melakukan OLAP (On-line Analytical Processing) , sedangkan data mining digunakan untuk melakukan information discovery KDD & Data warehouse

Arsitektur Data Mining KDD & Data warehouse

Tahap pemprosesan dalam Data Mining Knowledge Discovery In Database (KDD) KDD & Data warehouse

Penerapan Data Mining di Perusahaan Analisa Perusahaan dan Manajemen Resiko Perencanaan Keuangan dan Evaluasi Aset Data Mining dapat membantu untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu juga dapat menggunakannya untuk analisis trend. Perencanaan Sumber Daya (Resource Planning) Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, dapat memanfaatkannya untuk melakukan resource planning. Persaingan (Competition) Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu untuk memonitor pesaing-pesaing dan melihat market direction mereka. dapat melakukan pengelompokan customer dan memberikan variasi harga/layanan/bonus untuk masing- masing grup. Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran. KDD & Data warehouse

DATA MINING & KDD KDD & Data warehouse

DATA MINING Data Mining adalah kegiatan untuk menemukan informasi atau pengetahuan yang berguna secara otomatis dari data yang jumlahnya besar. Data Mining merupakan salah satu proses dari keseluruhan proses yang ada pada Knowledge Discovery in Databases (KDD). KDD & Data warehouse

KDD Knowledge Discovery in Databases (KDD) merupakan sekumpulan proses untuk menemukan pengetahuan yang bermanfaat dari data. Kumpulan proses dalam KDD meliputi : pembersihan data (data cleaning), integrasi data (data integration), pemilihan data (data selection), transformasi data (data transformation), penambangan data (data mining), evaluasi pola (pattern evaluation), dan presentasi pengetahuan (knowledge presentation). Berdasarkan definisi ini terlihat bahwa data mining hanya merupakan salah satu proses dari keseluruhan proses yang ada pada KDD, tetapi merupakan proses yang sangat penting dalam menemukan pola-pola yang berguna dari sejumlah data yang besar (data tersebut bisa disimpan dalam basisdata, Data Warehouse, atau media penyimpanan informasi lainnya). KDD & Data warehouse

DATA MINING & KDD DATA WAREHOUSE

KDD DATA MINING DATA WAREHOUSE KDD & Data warehouse

KDD vs. DM Menurut Cabena, Data Mining = Knowledge Discovery in Database (KDD). Menurut Jiawei Han, Data Mining merupakan Subset atau salah satu tahap dari KDD saja. Sehingga, batasan ini yang selanjutkan digunakan. Data Mining bertujuan mengekplorasi basis data untuk menemukan pola-pola pengetahuan yang tersembunyi di dalam data tersebut. KDD & Data warehouse

TAHAPAN KNOWLEDGE DISCOVERY IN DATABASE Menurut Peter Cabena, Tahapan – tahapan dalam KDD adalah sebagai berikut : Penentuan Sasaran Bisnis (Business Objective Determination) Persiapan Data (Preparation Data) Data Selection Data Preprocessing Data Transformation Data Mining Anaysis of Result Assimilation of Knowledge KDD & Data warehouse

Business Objective Determination - 1 Merupakan sebuah tahapan yang mendefinisikan permasalahan atau tantangan bisnis dengan jelas. Hal ini merupakan aspek yang sangat esensial dalam setiap proyek data mining. Contoh Sasaran Bisnis : Mengembangkan suatu strategi marketing untuk mempertahankan loyalitas customer di Jawa Tengah dan Jawa Timur untuk produk soft drink dengan brand dan ukuran tertentu (200ml dalam kotak alumunium) selama bulan April, Mei , Juni yang akan datang. Perusahaan akan menggunakan kombinasi dari berbagai strategi marketing (mixed marketing), yang salah satunya adalah direct mail campaign kepada customer yang tampaknya "mudah rusak" loyalitasnya. KDD & Data warehouse

Business Objective Determination - 2 Sehingga dampak keseluruhan KDD adalah : – Data Selection: dipilih customers yang membeli produk soft drink 200 ml dalam kotak alumunium di Jawa Tengah dan Jawa Timur. – Data Transformation: customers yang membeli produk soft drink 200 ml dalam kotak alumunium disorting dalam 10 kategori, yang masing-masing membedakan tingkat loyalitasnya: membeli produk tersebut 0-10%, 11-20%, ..... , 81-90%, 91- 100% sepanjang waktu pembeliannya. Selanjutnya data inilah yang akan dibawa ke tahap data mining. KDD & Data warehouse

Persiapan Data (Preparation Data) -1 Merupakan tahapan untuk mempersiapkan data yang diperlukan untuk proses data mining. Tujuannya adalah agar data yang digunakan benar-benar sesuai dengan permasalahan yang akan dipecahkan, dapat dijamin kebenarannya, dan dalam format yang sesuai/tepat. Tahap yang paling banyak mengkonsumsi resources (manusia, biaya, waktu) yang tersedia. Biasanya mencapai 60% keseluruhan proyek KDD. KDD & Data warehouse

Persiapan Data (Preparation Data) -2 Data Selection Mengidentifikasi semua sumber informasi internal dan eksternal dan memilih sebagian saja dari data yang diperlukan untuk aplikasi data mining. Data Preprocessing Meyakinkan kualitas data yang telah dipilih pada tahapan sebelumnya. 2 issue yang sering dihadapkan pada tahapan ini adalah Noisy Data dan Missing Value. Data Transformation Mengubah data ke dalam model analitis serta memodelkan data agar sesuai dengan analisa yang diharapkan dan format data yang diperlukan oleh algoritma data mining. KDD & Data warehouse

Data Mining -1 Melakukan proses pencarian pengetahuan terhadap data yang ditransformasikan pada tahap sebelumnya. Contoh Pengetahuan berbentuk Association Rule untuk kasus "Soft Drink“: IF soft drink sejenis dengan ukuran yang lebih besar (bukan botol kecil) dibeli lebih dari 58% dalam sejarah pembelian soft drink seorang consumer THEN consumer tersebut diprediksi Loyal. Pemilihan tugas data mining : pemilihan goal dari proses KDD misalnya klasifikasi, regresi, clustering, dll. KDD & Data warehouse

Data Mining -2 Proses Data mining yaitu proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu. Teknik, metode, atau algoritma dalam data mining sangat bervariasi. Pemilihan metode atau algoritma yang tepat sangat bergantung pada tujuan dan proses KDD secara keseluruhan. KDD & Data warehouse

Anaysis of Result Menginterpretasikan dan mengevaluasi output dari tahap mining: patterns. Pendekatan analisa yang digunakan akan bervariasi menurut operasi data mining yang digunakan, tetapi biasanya akan melibatkan teknik visualisasi. KDD & Data warehouse

Assimilation of Knowledge Menggunakan hasil mining yang telah dievaluasi ke dalam perilaku organisasi dan sistem informasi perusahaan. KDD & Data warehouse

DATA MINING dan PROSES KDD - 1 KDD & Data warehouse

DATA MINING dan PROSES KDD - 2 Pembersihan data (Data Cleaning) Digunakan untuk membuang data yang tidak konsisten dan noise. Intergrasi Data (Data Integration) Data yang diperlukan untuk data mining tidak hanya berasal dari satu database tetapi juga berasal dari beberapa database atau file teks. Hasil integrasi data sering diwujudkan dalam sebuah data warehouse karena dengan data warehouse, data dikonsolidasikan dengan struktur khusus yang efisien. Selain itu data warehouse juga memungkinkan tipe analisa seperti OLAP. Transformasi data Transformasi dan pemilihan data ini untuk menentukan kualitas dari hasil data mining, sehingga data diubah menjadi bentuk sesuai untuk di-Mining. Aplikasi Teknik Data Mining Aplikasi teknik data mining sendiri hanya merupakan salah satu bagian dari proses data mining. Ada beberapa teknik data mining yang sudah umum dipakai. Evaluasi pola yang ditemukan Dalam tahap ini hasil dari teknik data mining berupa pola-pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesa yang ada memang tercapai. Presentasi Pengetahuan Presentasi pola yang ditemukan untuk menghasilkan aksi tahap terakhir dari proses data mining adalah bagaimana memformulasikan keputusan atau aksi dari hasil analisa yang didapat. KDD & Data warehouse

Daftar Pustaka Djoni Darmawikarta, Mengenal Data Warehouse, 2003 Yudho Giri Sucahyo, Data Mining,2003 Yudho Giri Sucahyo, Penerapan Data Mining, 2003 Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden ; Modern Database Management 8th Edition; 2007 KDD & Data warehouse

Selesai KDD & Data warehouse