Analisis Ragam Peubah Ganda (MANOVA III) Matakuliah : I0214 / Statistika Multivariat Tahun : 2005 Versi : V1 / R1 Pertemuan 15 Analisis Ragam Peubah Ganda (MANOVA III)
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menerangkan konsep dasar analisis ragam peubah ganda (manova) C2 Mahasiswa dapat menghitung manova satu klasifikasi C3 Mahasiswa dapat melakukan uji Fisher dan uji Bartlette C3
Konsep dasar analisis ragam peubah ganda (manova) Outline Materi Konsep dasar analisis ragam peubah ganda (manova) Analisis ragam peubah ganda satu klasifikasi Uji Fisher Uji Bartlette
<<ISI>> Developed a while backÖ Tough to tackle without a fairly sophisticated computer.
<<ISI>> Definition ñ always a good place to start.
<<ISI>>
<<ISI>> Tests of Significance Wilks' Lambda where Se represents the error SSCP matrix and Sh represents the hypothesis SSCP matrix. For Example In a fixed effects model, Sw is the Se for all effects. While in the randoms effects model Sab is the Se for the main effects and Sw for the interaction. If A is fixed and B is random th Sab is the Se for A main effect and Sw is the Se for the B main effect and the interaction
<<ISI>> Rao's F Approximation degrees of Freedom degrees of Freedom Special Note Concerning s If either the numerator or the deminator of s = 0 set s = 1
<<ISI>> Hotelling's Trace Criterion Roy's Largest Latent Root Pillai's Trace Criterion
<<ISI>> Which of these is "best?“ Schatzoff (1966) Roy's largest-latent root was the most sensitive when population centroids differed along a single dimension, but was otherwise least sensative. Under most conditions it was a toss-up between Wilks' and Hotelling's criteria. Olson (1976) Pillai's criteria was the most robust to violations of assumptions concerning homogeneity of the covariance matrix. Under diffuse noncentrality the ordering was Pillai, Wilks, Hotelling and Roy. Under concentrated noncentrality the ordering is Roy, Hotelling, Wilks and Pillai. Final "Best" When sample sizes are very large the Wilks, Hotelling and Pillai become asymptotically equivalent
<<ISI>>
<<ISI>>
<<ISI>>
<< CLOSING>> Sampai dengan saat ini Anda telah mempelajari kosep dasar analisis ragam peubah ganda, dan manova satu klasifikasi Untuk dapat lebih memahami konsep dasar analisis ragam peubah ganda dan manova satu klasifikasi tersebut, cobalah Anda pelajari materi penunjang, website/internet dan mengerjakan latihan