ANOVA (Analysis of Variance)

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis (Satu Sampel)
Advertisements

ANALISIS OF VARIANS (ANOVA)
Uji Hipotesis Dua Populasi
UJI t INDEPENDEN.
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Probabilitas dan Statistika BAB 9 Uji Hipotesis Sampel Tunggal
PENGUJIAN HIPOTESIS Mugi Wahidin, M.Epid Prodi Kesehatan masyarakat
PENGUJIAN HIPOTESIS MEAN 2 SAMPEL INDEPENDEN
PENGUJIAN HIPOTESIS LEBIH DARI 2 MEAN
PENGUJIAN HIPOTESIS PROPORSI 1 SAMPEL
ANOVA (Analysis of Variance)
ANOVA Disusun oleh: FAHMI ( ) M.A.YUNANTO ( ) RIFQI SEPVANI VARADHY ( )
ANOVA (Analysis of Variance)
ANALYSIS OF VARIANCE (ANOVA)
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
STATISTIK daftar isi slide show # CHY SQUARE TEST ( TES KAI KUADRAT )
Oleh : Setiyowati Rahardjo
UJI BEDA MEAN DAN BEDA PROPORSI
Anova Erlisa C, S.Kep., Ns., M.Kep.
Probabilitas dan Statistika BAB 10 Uji Hipotesis Sampel Ganda
Anova Dep BiostatikFKM UI.
STATISTIK INFERENSIAL
created by Vilda Ana Veria Setyawati
UJI BEDA DUA MEAN (T-Test Independent)
Uji Statistik Beda 2 Mean (t-test)
STATISTIK INFERENSI.
ANALISIS VARIANSI (ANOVA)
ANOVA (Analysis of Variance)
Misal sampel I : x1, x2, …. Xn1 ukuran sampel n1
STATISTIK INFERENSIAL
Analisis Variansi.
Uji Hipotesis Dep Biostatik FKM UI.
UJI HIPOTESIS Perbandingan Dua Mean.
STATISTIK INDUSTRI.
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
Analisis Variansi Part 1 & 2 – Tita Talitha, MT.
Analisis ragam atau analysis of variance
KONSEP DASAR STATISTIK
Resista Vikaliana, S.Si.MM
UJI ANOVA (ANALISYS OF VARIAN)
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
STATISTIK II Pertemuan 12: Pengujian Hipotesis Sampel Kecil (n<30)
TWO WAY ANOVA.
KRUSKAL-WALLIS.
UJI PERBEDAAN FAKULTAS KESEHATAN MASYARAKAT UNIVERSITAS HASANUDDIN
T-test independen untuk varian tidak sama (assumed unequal variance)
T-test independen untuk varian tidak sama
MANOVA (Multivariate Analysis of Variance)
STATISTIK II Pertemuan 13: Pengujian Hipotesis Sampel Kecil (n<30)
ANALISIS COMPARE MEANS
Analisis Variansi.
Pertemuan 9: Pengujian Hipotesis Dua Populasi
Nilai UTS.
ANALYSIS OF VARIANCE (ANOVA)
Analisis Variansi.
Week 11-Statistika dan Probabilitas
HYPOTHESIS TESTING Beberapa Pengertian Dasar : Hipotesis Statistik
DASAR-DASAR UJI HIPOTESIS
UJI BEDA MEAN DUA SAMPEL
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
STATISTIK INFERENSI Statistik inferensi bagian dari pelajaran statistic yang mempelajari bagaimana mengambil sebuah keputusan tentang parameter populasi.
ANOVA (Analysis of Variance)
Analisis Variansi.
FIKES – UNIVERSITAS ESA UNGGUL
Analisis Variansi.
ANOVA SATU ARAH (Oneway Anova).
ANALISIS VARIANSI (AnaVa)
Analisis Variansi.
ANOVA (Analysis of Varians)
Transcript presentasi:

ANOVA (Analysis of Variance) Fakultas Ilmu-Ilmu kesehatan Universitas Esa unggul 11/06/2018

TUJUAN PEMBELAJARAN Tujuan Umum Setelah mengikuti materi ini mahasiswa diharapkan memahami Uji Hipotesis Beda Rata-rata lebih dari 2 kelompok independen Tujuan khusus, mahasiswa memahami: Pemanfaatan uji beda rata-rata lebih dari 2 kel. indep Asumsi Uji Anova Macam-macam Uji Anova Prosedur Uji Anova Latihan soal 11/06/2018

ANOVA Uji hipotesis perbedaan nilai rata-rata lebih dari 2 kelompok independen Contoh: Adakah perbedaan berat badan bayi lahir dari keluarga sosial ekonomi tinggi, sedang dan rendah. Adakah perbedaan LOS dari kelas perawatan VIP, I dan II Jika uji 2 mean  “Z”, “t-test” Kel 1 X Uji t atau t-test Kel 2 X 11/06/2018

ANOVA Jika >2 mean  uji Z dan t-test tidak efektif lagi karena dilakukan berulang kali  akan menyebabkan error type I (α) menjadi besar Prinsip uji Anova adalah melakukan telaah variabilitas data menjadi dua sumber variasi yaitu variasi dalam kelompok (within) dan variasi antar kelompok (between) α* = 1-(1-α)n 11/06/2018

PRINSIP UJI ANOVA X Treatment 1 Treatment 2 Treatment k Xi … X Deviasi X dengan Xi  Varian Within (S2w) Deviasi X dengan X  Varian Between (S2b) X 11/06/2018

ANOVA Asumsi Uji Anova Hipotesis Varian semua populasi adalah sama (homogen) Sampel/kelompok independen Populasi terdistribusi secara normal Jenis data yang dihubungkan adalah numerik dengan kategori (untuk kategori yang lebih dari 2 kelompok) Ho:μ1=μ2=μ3 (semua μ adalah sama) Ha: μ1≠μ2=μ3 (Tidak semua μ adalah sama) atau setidaknya salah satu dari μ berbeda dengan lainnya Hipotesis 11/06/2018

ANOVA Macam-macam Uji ANOVA Satu arah (one way anova) Melihat perbedaan bermacam-macam obat yang khasiatnya sama terhadap manusia (sampel) Dua arah (two way anova) Sampel dibedakan lagi berdasarkan jenis kelamin (laki-laki dan perempuan) Multi arah (MANOVA) Masing-masing obat dibedakan lagi berdasarkan dosis Sampel laki-laki maupun perempuan dibedakan lagi berdasarkan kelompok umur 11/06/2018

ANOVA Prosedur Uji ANOVA Ho:μ1=μ2=μ3 (semua μ adalah sama) Ha: μ1≠μ2=μ3 (Tidak semua μ adalah sama) atau setidaknya salah satu dari μ berbeda dengan lainnya Tentukan tingkat kepercayaan Test Statistik : Uji Anova Critical region (Ho ditolak, jika: F hitung ≥ F tabel (k-1, N-k;α) (k-1 = numerator), (N-k=denominator) Perhitungan uji Anova Keputusan: Kesimpulan: 11/06/2018

ANOVA F-rasio adalah perbandingan antara variasi antar group (between group) dengan variasi di dalam group (within group) Jika rasio tersebut besar, berarti variasi yang terjadi adalah akibat dari perbedaan treatment/kelompok Jika rasio tersebut kecil berarti variasi yang terjadi hanyalah akibat perbedaan antar individu Berapa rasio yang disebut besar? Tergantung dari derajat kemaknaan yang dapat diterima 11/06/2018

ANOVA Ada dua sumber varians untuk mengestimasi σ2 Between group (antar group) n1(x1 – x)2 + n2(x2 – x)2 + …+ nk(xk – x )2 S2b = k – 1 k = jumlah kelompok Within groups (pooled variance) (n1– 1)S12 + (n2– 1)S22 + …+ (nk– 1)Sk2 S2w = N – k Ratio Variance S2b F = S2w 11/06/2018

ANOVA Data Lay-out n1X1 + n2X2 + … + nkXk X = N Treatment 1 Treatment k Total X1 x2 X2 … Xn n1 n2 nk N=… Xk X S12 S22 Sk2 S2 n1X1 + n2X2 + … + nkXk X = N 11/06/2018

ANOVA Contoh Kasus Tiga macam obat tidur dilakukan trialnya terhadap tikus putih. Dicatat waktu dalam detik dari mulai obat diberikan sampai tikus itu tertidur. Buktikan apakah efek ketiga jenis obat tersebut sama (α=0,05) No Obat 1 Obat 2 Obat 3 1 47 55 54 2 53 58 50 3 49 51 4 61 5 46 62 Rata-rata 56 Varians 7.5 12.5 3.5 11/06/2018

Jawab Ho:μ1=μ2=μ3 (Tidak ada perbedaan efek dari obat 1, obat 2 & obat 3) Ha: μ1≠μ2=μ3 (Ada perbedaan efek dari obat 1, obat 2 dan obat 3) 1. 2. Tingkat kepercayaan 95% (α=0,05) 5 (49) + 5 (56) + 5 (51) X = 15 245 + 280 + 255 X = = 52 15 (5 – 1)7,5 + (5 – 1)12,5 + (5 – 1)3,5 S2w = = 7,8 15 – 3 5(49 – 52)2 + 5(56 – 52)2 + 5(51 – 52)2 S2b = = 65 3 – 1 S2b 65 F = = = 8,3 S2w 7,8 11/06/2018 F hitung

Lihat tabel F (Cuplikan) Df1 (numerator) = k-1=3-1=2 Df2 (denominator)=N-k=15-3=12 Nilai F hitung = 8,3 Denominator DF Area Numerator DF 1 2 3 4 5 6 dst 12 0,100 … 2,81 0,050 3,89 0,025 5,10 0,010 6,93 0,005 8,51 0,001 12,97 F hitung (8,3) > F tabel (3,89)  keputusan Ho ditolak Kesimpulan: Dengan α=5% ada perbedaan yang signifikan efek dari ketiga obat tersebut (Obat 1, 2 dan 3) 11/06/2018

ANALISIS MULTIPLE COMPARISON (POSTHOC TEST) Analisis ini bertujuan  mengetahui lebih lanjut kelompok mana saja yang lebih berbeda meannya  bilamana terjadi pada pengujian Anova dihasilkan ada perbedaan yang signifikan (Ho ditolak) Jenis analisis  Bonferroni, Honestly Significant Difference (HSD), Scheffe dll Perhitungan Bonferroni sbb: xi - xj tij = ---------------------------- √S2w [(1/ni) + (1/nj)] Dengan level of Sig (α) sbb: α α* = ------ (k2) 11/06/2018 df = n - k

CONTOH KASUS Misalnya pada soal di atas kita coba telusuri lebih lanjut kelompok mana saja yang efeknya yang berbeda: 3! Kombinasi uji t yang mungkin adalah (32) = ------------ = 3 (3-2)! 2! Pada soal di atas alpha 5% (0,05) maka α bonferroni adalah 0,05 α* = ---------- = 0,0167 = 0,01 3 Lanjutkan dengan uji t antara kelompok I dan II, I dan III, II dan III 11/06/2018

Lanjutan-Bonferroni xi - xj tij = ---------------------------- Uji kelompok I dan II xi - xj tij = ---------------------------- √S2w [(1/ni) + (1/nj)] 49 - 56 t12 = ------------------------ = -3,95 √7,8 [(1/5) + (1/5)] Langkah selanjutnya mencari nilai P dg tabel t dengan df = 15 – 3 = 12 Degree of Freedom (df) Area in Two Tail 0,50 0,20 0,10 0,05 0,02 0,01 0,001 1 … . 12 0,695 1,356 1,782 2,178 2,681 3,055 4,318 dst Dg nilai t hitung = -3,95 dan df=12, maka nilai p <0,01  nilai p ini < α* (0,01) Maka Ho ditolak  Kesimp: secara statistik ada perbedaan efek Obat 1 dan 2 11/06/2018

Lanjutan-Bonferroni 49 - 51 Uji kelompok I dan III √7,8 [(1/5) + (1/5)] Langkah selanjutnya mencari nilai P dg tabel t dengan df = 15 – 3 = 12 Degree of Freedom (df) Area in Two Tail 0,50 0,20 0,10 0,05 0,02 0,01 0,001 1 … . 12 0,695 1,356 1,782 2,178 2,681 3,055 4,318 dst Dg nilai t hitung = -1,13 dan df=12, maka (0,5>nilai p>0,2)  nilai p ini >α* (0,01) Maka Ho gatol  Kesimp: secara statistik tidak ada perbedaan efek Obat 1 dan 3 11/06/2018

Lanjutan-Bonferroni 56 - 51 Uji kelompok II dan III √7,8 [(1/5) + (1/5)] Langkah selanjutnya mencari nilai P dg tabel t dengan df = 15 – 3 = 12 Degree of Freedom (df) Area in Two Tail 0,50 0,20 0,10 0,05 0,02 0,01 0,001 1 … . 12 0,695 1,356 1,782 2,178 2,681 3,055 4,318 dst Dg nilai t hitung = 2,83 dan df=12, maka (0,02>nilai p>0,01)  nilai p ini >α* (0,01) Maka Ho gatol  Kesimp: secara statistik tidak ada perbedaan efek Obat 2 dan 3 11/06/2018