GEOMETRY GROUP 7 Loading... TRIANGLE Classifying Triangles The Pythagorean Theorem Special MATERI Classifying Triangles TRIANGLE The Pythagorean.

Slides:



Advertisements
Presentasi serupa
Cartesian Coordinate System
Advertisements

BANGUN DATAR Oleh Kelompok 1 1.Ahmad Ansori 2.Ayu Tiara Putri 3.Istasari 4.Larasati Andar Beni MEDIA PEMBELAJARAN BERBASIS ICT by KELOMPOK 1.
Teorema Green.
MEDIA PEMBELAJARAN FISIKA
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
Kelompok 6 Asti Pujiningtyas Eva Wulansari Mifta Zuliyanti Zuliyana Dewi A Kelompok 6 Asti Pujiningtyas
KELOMPOK 7 PEMBAHASAN DAN. Pertanyaan Kelompok 1 Hlm An architect is calculating the dimensions for a regular hexagon shaped window. If the height.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
The eEquation of a Circle Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait The eEquation of a Circle.
Assalamu’alaikum wr. Wb MUDAH-MUDAHAN KITA BISA AMBIL PELAJARANNYA SUKABUMI, 5 Juni 2016 Salam Inovasi Ai Mida Usmiati 13.T Loading...
Perbandingan ,fungsi, persamaan dan identitas trigonometri
Mengidentifikasi Sudut
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
VEKTOR VEKTOR PADA BIDANG.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
DATANG SELAMAT!!! PembelajaranBerbasis Web ...
SALAM INOVASI !!! Loading... Situbondo, 25 Juli 2009 SMKN 1 PANJI - SITUBONDO Loading...
Program Studi Teknologi Game Politeknik Elektronika Negeri Surabaya
GEOMETRI SUDUT DAN BIDANG.
SELAMAT!!! ? Loading... Anda sudah berhasil 75 % membuat multimedia pembelajaaran interaktif. Ganti teks, logo, gambar dan suara.
SELAMAT!!! ? Loading... Anda sudah berhasil 75 % membuat multimedia pembelajaaran interaktif. Ganti teks, logo, gambar dan suara.
www. Sitinurani15.wordpress.com Loading...
Solihat Loading... Percayalah,,, Dengan ikhtiar dan niat yang baik www. Solihat wordpress.com Percayalah,,, Dengan ikhtiar dan niat yang.
wellcome ? Siti Nur Patimah Loading...
SELAMAT!!! ? Loading... Anda sudah berhasil 75 % membuat multimedia pembelajaaran interaktif. Ganti teks, logo, gambar dan suara.
Pengujian Hipotesis (I) Pertemuan 11
Assalamu’alaikum wr. Wb SEMOGA BERMANFAAT  SUKABUMI, 05 Juni 2016 Resty Yunita 13.T Loading...
wellcome ? DERA PERTIWI Loading...
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Anda Pemenang… atau Pecundang ?
Let’s Begin ... !!! Assalamu’alaikum Wr.Wb. Before Study, Let’s open our class today by reciting Bismillahirrahmanirrahim… Loading...
VECTOR VECTOR IN PLANE.
Mathematics : Cube By Boy Group.
BELAJAR DENGAN CD INTERAKTIF SELAMAT BELAJAR DENGAN CD INTERAKTIF BANGUN RUANG SISI DATAR Loading...
3.
Assalamu’alaikum wr. Wb SUKABUMI, 30 Mei 2016 Ai Silvi Hilmiani 13.T Loading...
Assalamu’alaikum wr. Wb SEMOGA BERMANFA’AT SUKABUMI, Juni 2016 Salam Inovasi MASLIYAH 13.T Loading...
Assalamu’alaikum Wr. Wb Iin Nurjamilah 13.T Loading...
ISMA NABILA 13.T Loading... Assalamualaikum Wr.wb. Assalamualaikum Wr.wb. SALAM SEJAHTERA ISMA NABILA.
Assalamu’alaikum wr. Wb MUDAH-MUDAHAN BERMANFA’AT SUKABUMI, Juni 2016 Salam Inovasi RATNASARI Loading...
SELAMAT!!! ? ANDA Belajar Matematika dengan ASYIK, INOVATIF, KONSTRUKTIF, dan MENYENANGKAN. Soroako, 20 Juli 2011 Salam inovasi Made Nuryadi ?
REAL NUMBERS EKSPONENT NUMBERS.
Rectangles, Rhombuses, and Squares
FACTORING ALGEBRAIC EXPRESSIONS
Kamus B.Inggris dalam Kosakata Matematika
PENGERTIAN TRAPESIUM Trapesium adalah segi empat dengan tepat sepasang sisi yang berhadapan sejajar. sejajar berhadapan Segi empat SEMBARANG SAMA KAKI.
PROBABILITY.
Kosakata matematika Matematika 100%
Master data Management
Disusun oleh : KARLINA SARI ( ) ALIFA MUHANDIS S A ( )
Selamat Datang dalam Bedah SKL UN SMP di Penerbit Erlangga Loading...
Assalamu’alaikum wr. Wb MUDAH-MUDAHAN KITA BISA AMBIL PELAJARANNYA SUKABUMI, Juni 2016 Salam Inovasi YUNITA 13.T Loading...
Eva Sri Novita JASMANSYAH, M.Pd Assalamu’alaikum ? Eva Sri Novita JASMANSYAH, M.Pd.
Three Dimensional Geometry (Geometri Dimensi Tiga)
_______ _______ _ _ SITI MARYAM 13.T SUKABUMI, JUNI 2016 _______ _______ _ _ SUKABUMI, JUNI 2016 Salam Inovasi SITI MARYAM 13.T
SUKABUMI, 07 Juni 2016 L I N A 13.T Loading...
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
SELAMAT DATANG!!! Loading... ? Animasi Tweening MENU UTAMA Tujuan Indikator Materi Pokok Video Silakan Anda ganti judul utama, kelas dan semesternya.
SELAMAT!!! Anda akan belajar Ilmu Kimia Kelas X Semester 2 Semoga dengan Media Pembelajaran Presentasi ini lebih mudah dan menarik Semarang, 27.
BAHAN AJAR POWER POINT PENDIDIDKAN AGAMA ISLAM SMP Kelas.IX
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Click untuk memulai pelajaran pythagoras
SELAMAT DATANG!!! Loading... ? Animasi Tweening MENU UTAMA Tujuan Indikator Materi Pokok Video Silakan Anda ganti judul utama, kelas dan semesternya.
CONT Teorema Pythagoras Apa itu teorema pythagoras (maknanya apa ??)
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
SELAMAT DATANG!!! Loading... ? Animasi Tweening MENU UTAMA Tujuan Indikator Materi Pokok Relaksasi Silakan Anda ganti judul utama, kelas dan semesternya.
Transcript presentasi:

GEOMETRY GROUP 7 Loading...

TRIANGLE Classifying Triangles The Pythagorean Theorem Special MATERI Classifying Triangles TRIANGLE The Pythagorean Theorem Special Triangles Silakan Anda ganti judul utama, kelas dan semesternya dengan cara mengklik dua kali pada objek yang akan dirubah. Sesuaikan juga jumlah dan nama menu utama pada materi pembelajaran anda. Jika lebih cukup anda delete dan jika kurang anda bisa copy-paste. Tombol-tombol kurikulum, evaluasi, profil, referensi, bantuan, speaker, dan silang exit hanya bisa diedit di dalam slide master. Caranya klik View > Master > Master Slide.

We can classify triangles according to Classifying Triangles Based on the sides We can classify triangles according to the lengths of the sides or by the measure of the angles Based on the angles

Equilateral Triangle An equilateral triangle is a triangle with three Based on the sides Equilateral Triangle An equilateral triangle is a triangle with three congruent sides Equilateral Isosceles scalenes

If a triangel is isosceles, then its base angles are congruent Based on the sides Isosceles Triangle An isosceles triangle is a triangle with at least two congruent sides Equilateral If a triangel is isosceles, then its base angles are congruent Theorem Isosceles scalenes Proof

Proof Based on the sides PROOF Given : Let ∆ABC be isosceles with CA CB Prove : Plan : Let D be the midpoint of AB. Draw CD and prove that ∆CAD ∆CBD Equilateral Isosceles scalenes

Proof Based on the sides Statements Reasons Equilateral Isosceles 1. ∆ABC is isosceles with CA CB 1. Given 2. D is the midpoint of AB 2. Every line segment has one and only one midpoint. 3. ∆CAD ∆CBD 3. A segment from the vertex angle to the midpoint of the opposite side forms a pair of congruent triangles (Theorem 4 – 2) 4. 4. CPCTC Equilateral Isosceles scalenes

Scalene Triangle A scalene triangle is a triangle with no congruent Based on the sides Scalene Triangle A scalene triangle is a triangle with no congruent sides Equilateral Isosceles scalenes

Acute Triangle An acute triangle is a triangle with three acute angles Based on the angles An acute triangle is a triangle with three acute angles Acute Right Obtuse Equiangular

Right Triangle A right triangle is a triangle with a right angle Based on the angles A right triangle is a triangle with a right angle Acute Right Obtuse Equiangular

Obtuse Triangle An obtuse triangle is a triangle with an obtuse angle Based on the angles An obtuse triangle is a triangle with an obtuse angle Acute Right Obtuse Equiangular

Equiangular Triangle An equiangular triangle is a triangle with three Based on the angles An equiangular triangle is a triangle with three congruent angles Acute Right Obtuse Equiangular

The Pythagorean Theorem If ∆ABC is a right triangle, then the square of the length of the hypotenuse equals the sum of the squares of the lengths of the legs Theorem Proof

The Pythagorean Theorem Proof Given: Right triangle ABC with hypotenuse length c and leg lengths a and b Prove : c2 =a2+b2 Analysis : Build upon ∆ABC like those shown in example 1-3. The square upon a has area a2. The square upon side b has area b2. The square upon c has area c2. The square upon side c consists of four triangles to ∆ABC and a square.The figure shows that the length of the side of the small square is a-b.We can find the area of the large square by adding the areas of the four triangles to the area of the small square. Theorem

The Pythagorean Theorem Proof The area of the triangles is .The area of the square is (a-b)2 .So c² = 4 + (a – b) ² = 2ab + (a² - 2ab + b²) =a² + b² Theorem

Pembuktian Cara Yang Lain The Pythagorean Theorem Gambar tersebut adalah gambar sebuah trapesium yang dibentuk dari 3 segitiga. Luas trapesium tersebut adalah  . dicari menggunakan rumus luas trapesium. Yaitu setengah dikalikan dengan jumlah sisi yang sejajar dikali tinggitrapesium. Mencari luas bangun datar diatas dapat juga menggunakan jumlah luas segitiga (perhatikan gambar). Yaitu     . Theorem

Pembuktian Cara Yang Lain The Pythagorean Theorem Pembuktian Cara Yang Lain Luas yang dihitung adalah Luas Trapesium dan Luas Segitiga, sehingga diperoleh, Theorem

Profil Group 7 : 1. Ummi Hanna Kholifah / 4101414018 2. Ainun Ni’mah / 4101414025 3. Eka Firdani Prasetyaningtyas / 4101414027 4. Novi Nur Hidayah / 4101414028

Geometry With Aplication and Problem Solving Referensi Geometry With Aplication and Problem Solving

Theorem 1 Proof The length of the hypotenuse of a 45°-45°-90° Special Triangels The length of the hypotenuse of a 45°-45°-90° triangle is times the length of a leg Theorem 1 Theorem 2 Proof

Theorem 1 PROOF A C B Special Triangels Theorem 1 45° Theorem 2 x 45°

Theorem 2 Proof The length of the longer leg of a 30°-60°-90° Special Triangels The length of the longer leg of a 30°-60°-90° triangle is times the length of the hypotenuse or times the length of the shorter side Theorem 1 Theorem 2 Proof

Theorem 1 PROOF A x B D C Special Triangels Theorem 1 Theorem 2 30° 60° B D C

THANK YOU GROUP 7 Rombel 2