Logika (logic).

Slides:



Advertisements
Presentasi serupa
Soal Latihan 1 Diberikan pernyataan “Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika”. (a)  Nyatakan pernyataan di atas dalam notasi.
Advertisements

LOGIKA Viska Armalina ST., M.Eng.
Matematika Diskrit Dr.-Ing. Erwin Sitompul
Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus
Logika.
Pengantar Logika Proposional
Materi Kuliah IF2091 Struktur Diskrit
LOGIKA - 3 Viska Armalina, ST., M.Eng.
TABEL KEBENARAN.
Tabel Kebenaran LOGIKA INFORMATIKA Program Studi TEKNIK INFORMATIKA
LOGIKA LOGIKA LOGIKA.
Mata Kuliah Logika Informatika 3 SKS Bab II : Proposisi.
1.7 Proposisi Bersyarat (implikasi)
Materi Kuliah IF2091 Struktur Diskrit
MATEMATIKA DISKRIT By DIEN NOVITA.
Logika (logic).
MATEMATIKA DISKRIT By DIEN NOVITA.
LOGIKA MATEMATIKA PERTEMUAN 5 KALKULUS PROPOSISI
LOGIKA.
LOGIKA Purbandini, S.Si, M.Kom.
Matematika Diskrit Oleh Ir. Dra. Wartini.
Matematika Diskrit Logika Matematika Heru Nugroho, S.Si., M.T.
(menggunakan simbol ) (menggunakan simbol )
Pertemuan 2 LOGIKA (PROPOSISI).
Matematika Diskrit Logika Matematika Heru Nugroho, S.Si., M.T.
Pertemuan ke 1.
BAB 1 Logika Pengantar Logika
DASAR LOGIKA MATEMATIKA
Nelly Indriani Widiastuti S.Si., M.T Prodi – Teknik Informatika UNIKOM
LOGIKA Logika mempelajari hubungan antar pernyataan-pernyataan yang berupa kalimat-kalimat atau rumus-rumus, sehingga dapat menentukan apakah suatu pernyataan.
Matematika Informatika 2
LOGIKA STRUKTUR DISKRIT K-2 Program Studi Teknik Komputer
LOGIKA MATEMATIKA Universitas Telkom
Matematika Diskrit Logika.
Matematika Diskrit Bab 1-logika.
Logika (logic).
PENALARAN MATEMATIKA OLEH KELOMPOK 1 Nama:
Pertemuan # 2 Logika dan Pembuktian
DU.116 Lise Sri Andar Muni Teknik Informatika STT Wastu Kencana 2013
Materi Kuliah Matematika Disktrit I Imam Suharjo
Logika Semester Ganjil TA
BAB 2 LOGIKA
PROPOSITION AND NOT PROPOSITION
Program Studi Teknik Informatika
IMPLIKASI (Proposisi Bersyarat)
NEGASI, KONJUNGSI, DISJUNGSI, IMPLIKASI, DAN BIIMPLIKASI
F. Metode Inferensi Teknik untuk mendapatkan konklusi yang valid berdasarkan premise yang ada tanpa menggunakan Tabel Kebenaran Ada beberapa Metode antara.
Pernyataan/ Putusan Dan Proposisi
MATERI 1 PERNYATAAN PENGHUBUNG PERNYATAAN
Oleh : Devie Rosa Anamisa
Disjungsi Eksklusif dan Proposisi Bersyarat
Matematika diskrit Logika Proposisi
Varian Proposisi Bersyarat
PRESENTASI PERKULIAHAN
Matematika Diskrit TIF (4 sks) 3/9/2016.
Oleh : Cipta Wahyudi, S.Kom, M.Eng, M.Si
Aljabar Logika. 1. Kalimat Deklarasi. 2. Penghubung Kalimat. 3
Materi Kuliah TIN2204 Struktur Diskrit
Adalah cabang dari matematika yang mengkaji objek-objek diskrit.
Proposisi Lanjut Hukum Ekuivalensi Logika
1.1 Proposisi & Proposisi Majemuk
Matematika Diskrit Logika Matematika Dani Suandi,S.Si.,M.Si.
Tabel Kebenaran Dan Proposisi Majemuk
Pengantar Logika PROPOSISI
BAB 2 LOGIKA MATEMATIKA.
Materi Kuliah IF2091 Struktur Diskrit
Contoh 1 Kalimat (p → q) → r bernilai benar Jika
DASAR LOGIKA MATEMATIKA
1 Logika Matematik. 2 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Materi Kuliah Matematika Diskrit
Transcript presentasi:

Logika (logic)

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.

Contoh 1. Semua pernyataan di bawah ini adalah proposisi: (a) 13 adalah bilangan ganjil (b) Soekarno adalah alumnus UGM. (c) 1 + 1 = 2 (d) 8  akar kuadrat dari 8 + 8 (e) Ada monyet di bulan (f)  Hari ini adalah hari Rabu (g) Untuk sembarang bilangan bulat n  0, maka 2n adalah bilangan genap (h) x + y = y + x untuk setiap x dan y bilangan riil 

Contoh 2. Semua pernyataan di bawah ini bukan proposisi (a) Jam berapa kereta api Argo Bromo tiba di Gambir? (b) Isilah gelas tersebut dengan air! (c) x + 3 = 8 (d) x > 3  Kesimpulan: Proposisi adalah kalimat berita

Proposisi dilambangkan dengan huruf kecil p, q, r, …. Contoh: p : 13 adalah bilangan ganjil. q : Soekarno adalah alumnus UGM. r : 2 + 2 = 4

Mengkombinasikan Proposisi Misalkan p dan q adalah proposisi. 1. Konjungsi (conjunction): p dan q Notasi p  q, 2. Disjungsi (disjunction): p atau q Notasi: p  q 3. Ingkaran (negation) dari p: tidak p Notasi: p   p dan q disebut proposisi atomik Kombinasi p dengan q menghasilkan proposisi majemuk (compound proposition

Contoh 3. Diketahui proposisi-proposisi berikut: p : Hari ini hujan q : Murid-murid diliburkan dari sekolah p  q : Hari ini hujan dan murid-murid diliburkan dari sekolah p  q : Hari ini hujan atau murid-murid diliburkan dari sekolah p : Tidak benar hari ini hujan (atau: Hari ini tidak hujan)   

Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus Proposisi majemuk disebut kontradiksi jika ia salah untuk semua kasus.

Hukum-hukum Logika

Proposisi Bersyarat (kondisional atau implikasi) Bentuk proposisi: “jika p, maka q” Notasi: p  q Proposisi p disebut hipotesis, antesenden, premis, atau kondisi Proposisi q disebut konklusi (atau konsekuen).

a. Jika saya lulus ujian, maka saya mendapat hadiah dari Contoh 10. a.   Jika saya lulus ujian, maka saya mendapat hadiah dari ayah b.   Jika suhu mencapai 80C, maka alarm akan berbunyi c.   Jika anda tidak mendaftar ulang, maka anda dianggap mengundurkan diri

Cara-cara mengekspresikan implikasi p  q: Jika p, maka q Jika p, q p mengakibatkan q (p implies q) q jika p p hanya jika q p syarat cukup untuk q (hipotesis menyatakan syarat cukup (sufficient condition) ) q syarat perlu untuk p (konklusi menyatakan syarat perlu (necessary condition) ) q bilamana p (q whenever p)

Contoh 13. Proposisi-proposisi berikut adalah implikasi dalam berbagai bentuk: Jika hari hujan, maka tanaman akan tumbuh subur. Jika tekanan gas diperbesar, mobil melaju kencang. Es yang mencair di kutub mengakibatkan permukaan air laut naik. Orang itu mau berangkat jika ia diberi ongkos jalan. Ahmad bisa mengambil matakuliah Teori Bahasa Formal hanya jika ia sudah lulus matakuliah Matematika Diskrit. Syarat cukup agar pom bensin meledak adalah percikan api dari rokok. Syarat perlu bagi Indonesia agar ikut Piala Dunia adalah dengan mengontrak pemain asing kenamaan. Banjir bandang terjadi bilamana hutan ditebangi.

Perhatikan bahwa dalam implikasi yang dipentingkan nilai kebenaran premis dan konsekuen, bukan hubungan sebab dan akibat diantara keduanya. Beberapa implikasi di bawah ini valid meskipun secara bahasa tidak mempunyai makna: “Jika 1 + 1 = 2 maka Paris ibukota Perancis” “Jika n bilangan bulat maka hari ini hujan”

Varian Proposisi Bersyarat

Contoh 15. Tentukan konvers, invers, dan kontraposisi dari: “Jika Amir mempunyai mobil, maka ia orang kaya” Penyelesaian: Konvers : Jika Amir orang kaya, maka ia mempunyai mobil Invers : Jika Amir tidak mempunyai mobil, maka ia bukan orang kaya Kontraposisi: Jika Amir bukan orang kaya, maka ia tidak mempunyai mobil

Bikondisional (Bi-implikasi)

Bila dua proposisi majemuk yang ekivalen di-bikondisionalkan, maka hasilnya adalah tautologi.   Teorema: Dua buah proposisi majemuk, P(p, q, ..) dan Q(p, q, ..) disebut ekivalen secara logika, dilambangkan dengan P(p, q, …)  Q(p, q, …), jika P  Q adalah tautologi.

Metode Inferensi Teknik untuk mendapatkan konklusi yang valid berdasarkan premise yang ada tanpa menggunakan Tabel Kebenaran Ada beberapa Metode antara lain : Modus Ponen (MP) Modus Tollens (MT) Equivalence Elimination (EE)

1. Modus Ponens (MP) Secara simbol dinyatakan sebagai berikut : p  q premis 1 p premis 2 q konklusi Jika Toni mandi maka saya pergi kuliah Toni mandi Saya pergi kuliah

Contoh : Jika Budi bersalah maka ia dimasukan ke dalam penjara Budi bersalah Ia dimasukan ke dalam penjara Jika Amir orang kaya maka ia mempunyai mobil Amir orang kaya Ia mempunyai mobil

2. Modus Tollens (MT) Secara simbol dinyatakan sebagai berikut : p  q premis 1  q premis 2  p konklusi Jika Toni mandi maka saya pergi kuliah Saya tidak pergi kuliah Toni tidak mandi

Contoh : Jika Budi bersalah maka ia dimasukan ke dalam penjara Ia tidak dimasukan ke dalam penjara Budi tidak bersalah Jika Amir orang kaya maka ia mempunyai mobil Amir tidak mempunyai mobil Amir bukan orang kaya

3. Equivalence Elimination (EE) Secara simbol dinyatakan sebagai berikut : p  q premis 1 p  q konklusi atau q  p Toni mandi jika dan hanya jika Ia pergi ke pasar JikaToni mandi maka ia pergi ke pasar Jika Ia pergi ke pasar maka Toni mandi

Contoh : Budi membeli es krim jika dan hanya jika udara panas Jika Budi membeli es krim maka udara panas Jika udara panas maka Budi membeli es krim

4. Silogisme Disjungtif (SD) Secara simbol dinyatakan sebagai berikut : p  q premis 1  p premis 2 q konklusi Atau  q premis 2 p konklusi

Contoh : Budi membeli es krim atau Bapak ke kantor Budi tidak membeli es krim Bapak ke kantor Bapak tidak ke kantor Budi membeli es krim

5. Silogisme Hipotesis (SH) Secara simbol dinyatakan sebagai berikut : p  q premis 1 q  r premis 2 p  r konklusi Contoh : Jika Toni mandi maka saya pergi kuliah Jika saya pergi kuliah maka Jono tidur Jika Toni mandi maka Jono tidur