KALKULUS Betha Nurina Sari,S.Kom.

Slides:



Advertisements
Presentasi serupa
HIMPUNAN MATEMATIKA EKONOMI
Advertisements

PENDAHULUAN : ALJABAR ABSTRAK
BAB II HIMPUNAN.
Matematika Bisnis Yeni Puspita, SE.,ME.
MATEMATIKA BISNIS HIMPUNAN.
HIMPUNAN MATEMATIKA EKONOMI.
Himpunan.
BAB I HIMPUNAN KULIAH KE 1.
MATEMATIKA BISNIS HIMPUNAN.
MATEMATIKA BISNIS by : Dien Novita
Matematika Informatika 1
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
BAB II HIMPUNAN.
Logika Matematika Teori Himpunan
MATHEMATICS FOR HEALTH Betha Nurina Sari,S.Kom. KONTAK  BETHA NURINA SARI,S.KOM  
Pertemuan ke-1 Himpunan Matakuliah : I0252 / Probabilitas Terapan
Matematika Diskrit bab 2-Himpunan
Pertemuan ke 4.
Oleh : Devie Rosa Anamisa
MATERI KE-1 MATEMATIKA EKONOMI I
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
Logika Matematika Teori Himpunan
Bahan kuliah Matematika Diskrit
BAB II HIMPUNAN.
MATEMATIKA BISNIS & EKONOMI
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
HIMPUNAN MATEMATIKA EKONOMI.
Oleh : Widita Kurniasari, SE, ME
Himpunan Citra N, MT.
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Analisa Data & Teori Himpunan
Erna Sri Hartatik Matematika 1 Pertemuan 1 Himpunan.
Kontrak Perkuliahan KALKULUS I Ayundyah Kesumawati Kode Mata Kuliah
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
TEORI HIMPUNAN.
PENGERTIAN HIMPUNAN Himpunan merupakan kumpulan objek-objek (benda). Objek-objek yang dimaksud di sini adalah elemen atau anggota himpunan tersebut CARA.
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
PENGERTIAN HIMPUNAN Himpunan merupakan kumpulan objek-objek (benda). Objek-objek yang dimaksud di sini adalah elemen atau anggota himpunan tersebut CARA.
BAB II HIMPUNAN.
MATEMATIKA BISNIS Pertemuan Pertama Hani Hatimatunnisani, S. Si
HIMPUNAN.
HIMPUNAN Dasar dasar Matematika aderismanto01.wordpress.com.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI UT HIMPUNAN dan SISTEM BILANGAN.
TEORI HIMPUNAN Pertemuan ke sembilan.
PENGERTIAN HIMPUNAN Himpunan merupakan kumpulan objek-objek (benda). Objek-objek yang dimaksud di sini adalah elemen atau anggota himpunan tersebut CARA.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
PENDAHULUAN : ALJABAR ABSTRAK
MATEMATIKA EKONOMI HIMPUNAN dan SISTEM BILANGAN Ir Tito Adi Dewanto.
Logika Matematika Teori Himpunan
Matematika Diskrit Himpunan Sri Nurhayati.
Oleh : Widita Kurniasari, SE, ME
Kelas 7 SMP Marsudirini Surakarta
Oleh : Widita Kurniasari
Logika Matematika Teori Himpunan
Logika Matematika Himpunan Sri Nurhayati.
Dasar Dasar Matematika
PENGERTIAN HIMPUNAN Himpunan merupakan kumpulan objek-objek (benda). Objek-objek yang dimaksud di sini adalah elemen atau anggota himpunan tersebut CARA.
Oleh : Widita Kurniasari
HIMPUNAN MATEMATIKA EKONOMI Pengertian Himpunan Penyajian Himpunan Himpunan Universal dan Himpunan Kosong Operasi Himpunan Kaidah Matematika dalam Operasi.
HIMPUNAN MATEMATIKA DISKRIT.
PERTEMUAN 1 MATEMATIKA BISNIS 1A
Transcript presentasi:

KALKULUS Betha Nurina Sari,S.Kom

KONTAK BETHA NURINA SARI,S.KOM 081553031989 bethanurinasari@gmail.com bethaajaaa.blogspot.com / bethanurinasari.wordpress.com

KONTRAK KULIAH PERTEMUAN : 10-14 KALI MATH FOR ENGINEERING & MATH FOR INFORMATICS TUGAS : 30 % UTS : 20 % QUIZ : 10 % UAS : 25 % SOFTSKILL : 15% KETERLAMBATAN MAKSIMAL 15 MENIT -> JIKA LEBIH MAKA KESEPAKATAN MAHASISWA ...........<APA?>

APA SAJA YANG ANDA PELAJARI DI MATKUL INI ?

Himpunan Relasi Fungsi Limit Turunan Proporsi Aljabar Boolean Integral MATERI KALKULUS Himpunan Relasi Fungsi Limit Turunan Proporsi Aljabar Boolean Integral

APA ITU KALKULUS ??? Kalkulus (BahasaLatin: calculus, artinya "batukecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret tak terhingga.

HIMPUNAN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek dan didefinisikan dgn jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan disebut anggota, atau elemen, atau unsur. Simbol himpunan : A, B, C, P, Q, R, X, Y atau Z (dengan huruf kapital) Simbol anggota suatu himpunan : a, b, c, p, q, r, x, y atau z.

Penulisan Matematis (Notasi) : p ∈ A berarti obyek p merupakan anggota (unsur atau elemen) dari himpunan A p ∉ A berarti obyek p BUKAN anggota (unsur atau elemen) dari himpunan A

HIMPUNAN Obyek dalam himpunan disebut elemen/anggota himpunan Ex : A = { 1, 2, 3 }, maka elemen-elemen himpunan A adalah 1, 2 dan 3 Himpunan yang tidak memiliki anggota disebut himpunan kosong (empty set) dinotasikan dengan ф

HIMPUNAN Menyatakan Himpunan : Ada 2 cara : 1. Menuliskan tiap-tiap anggota himpunan diantara 2 kurung kurawal ex : A = { Jhony, Yukiyem, Michael } 2. Menuliskan sifat-sifat semua anggota himpunan diantara 2 kurung kurawal ex : B = { x / x = bilangan prima yang diawali dari angka 7 }

JENIS-JENIS HIMPUNAN Himpunan Semesta Himpunan semesta adalah himpunan yang anggotanya semua objek pembicaraan. Simbol himpunan semesta : S atau U. Himpunan Kosong Himpunan yang tidak memiliki satupun elemen atau himpunan dengan kardinal = 0 disebut himpunan kosong (null set). Notasi : ∅ atau { } Contoh : E = {x | x < x}, maka n(E) = 0 P = {orang Indonesia yang pernah ke bulan}, maka n(P) = 0

JENIS-JENIS HIMPUNAN Himpunan Bagian (Subset) Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. Dalam hal ini, B dikatakan superset dari A Notasi : A ⊆ B Contoh : {1, 2, 3} ⊆ {1, 2, 3, 4, 5} {1, 2, 3} ⊆ {1, 2, 3} A = {p, q, r} bukan himpunan bagian dari B = {m, p, q, t, u} karena r ∈ A tetapi r ∉ B

JENIS-JENIS HIMPUNAN Himpunan yang Sama Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap B merupakan elemen A. Dengan kata lain, A sama dengan B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka dikatakan A tidak sama dengan B. Notasi : A = B ↔ A ⊆ B dan B ⊆ A

Contoh Himpunan yang Sama dan Tidak Sama : Jika A = {0, 1} dan B = {x | x(x-1) = 0}, maka A = B Jika A = {3, 5, 8, 5} dan B = {5, 3, 8}, maka A = B B = {3, 8}, maka A ≠ B

JENIS-JENIS HIMPUNAN 5. Himpunan yang saling lepas Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama. Notasi : A // B Contoh : Jika A = {x | x ∈ P, x < 8} dan B = {10, 20, 30,…}, maka A // B

OPERASI HIMPUNAN : = U – A 1. Gabungan (Union) A U B = {x| x Є A atau x Є B} 2. Irisan (Intersection) A ∩ B = {x| x Є A dan x Є B} 3. Selisih A - B = A|B {x| x Є A tetapi x Є B} 4. Pelengkap (Complement) Ā atau A’ atau Ac= {x| x Є U tetapi x Є A} = U – A

OPERASI HIMPUNAN Himpunan Semesta (U) adalah himpunan yang merupakan batas dari ruang pembicaraan. Diagram Venn adalah suatu cara menggambarkan secara mudah hubungan antara dua himpunan atau lebih.

Kaidah-kaidah Matematika dalam Pengoperasian Himpunan Kaidah Idempoten A U A = A b. A ∩ A = A Kaidah Asosiatif ( A U B ) U C = A U ( B U C ) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) Kaidah Komutatif A U B = B U A b. A ∩ B = B ∩ A Kaidah Distributif A U ( B ∩ C ) = ( A U B ) ∩ ( A U C ) A ∩ ( B U C ) = ( A ∩ B ) U ( A ∩ C )

Kaidah-kaidah Matematika dalam Pengoperasian Himpunan Lanjutan ............ Kaidah Identitas a. A U Ø = A b. A ∩ Ø = Ø c. A U U = U d. A ∩ U = A Kaidah Kelengkapan a. A U Ā = U b. A ∩ Ā= Ø c. ( Ā ) = A d. U = Ø Ø = U Kaidah De Morgan a. (A U B)= Ā ∩ B b. (A ∩ B) = Ā U B

LATIHAN

OLEH-OLEH ^^ Gambarkan sebuah diagram venn untuk menunjukkan himpunan universal U dan himpunan-himpunan bagian A serta B jika : U = {1,2,3,4,5,6,7,8 } A = {2,3,5,7} B = {1,3,4,7,8 } Kemudian selesaikan : (a) A – B (c) A ∩ B (e) A ∩ B’ (b) B – A (d) A U B (f) B ∩ A’