Tutun Juhana tutun@telecom.ee.itb.ac.id Review probabilitas Tutun Juhana tutun@telecom.ee.itb.ac.id
Sample space, sample points, events Sample space,, adalah sekumpulan semua sample points,, yang mungkin; dimana Contoh 1. Melemparkan satu buah koin:={Gambar,Angka} Contoh 2. Menggelindingkan dadu: ={1,2,3,4,5,6} Contoh 3. Jumlah pelanggan dalam antrian: ={0,1,2,…} Contoh 4. Waktu pendudukan panggilan (call holding time): ={xx>0} Events A,B,C,… adalah himpunan bagian dari sample space Contoh 1. Angka genap pada sebuah dadu:A={2,4,6} Contoh 2. Tidak ada pelanggan yang mengantri : A={0} Contoh 3. Call holding time lebih dari 3 menit. A={xx>3} Event yang pasti : sample space Event yang tidak mungkin : himpunan kosong ()
Kombinasi event Union (gabungan) :“A atau B” : AB={A atau B} Irisan: “A dan B” : AB={A dan B} Komplemen : “bukan A”:Ac={A} Event A dan B disebut tidak beririsan (disjoint) bila : AB= Sekumpulan event {B1,B2,…} merupakan partisi dari event A jika (i) Bi Bj= untuk semua ij (ii) iBi =A
Probabilitas (peluang) Back to Six Probabilitas (peluang) Probabilitas suatu event dinyatakan oleh P(A) P(A)[0,1] Sifat-sifat peluang
Conditional Probability (Peluang bersyarat) Asumsikan bahwa P(B)>0 Definisi : Conditional probability dari suatu event A bila diketahui event B terjadi didefinisikan sebagai berikut Dengan demikian
Teorema Probabilitas Total Bila {Bi} merupakan partisi dari sample space Lalu {ABi} merupakan partisi dari event A, maka berdasarkan sifat probabilitas yang ketujuh pada slide nomor 4 Kemudian asumsikan bahwa P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 dapat didefinisikan teorema probabilitas total sbb
Teorema Bayes Bila {Bi} merupakan partisi dari sample space Asumsikan bahwa P(A)>0 dan P(Bi)>0 untuk semua i. Maka berdasarkan uraian pada slide nomor 5 Kemudian, berdasarkan teorema probabilitas total, kita peroleh Ini merupakan teorema Bayes Peluang P(Bi) disebut peluang a priori dari event Bi Peluang P(BiA) disebut peluang a posteriori dari event Bi (bila diketahui event A terjadi)
Kesalingbebasan statistik dari event (Statistical independence of event) Definisi : Event A dan B saling bebas (independent) jika Dengan demikian Demikian pula
Peubah acak (random variables) Definisi : Peubah acak X (yang merupakan bilangan riil [real-valued]) adalah fungsi bernilai riil dan dapat diukur yang didefinisikan pada sample space ;X: Setiap titik sample (sample points) wW dihubungkan dengan sebuah bilangan riil X(w) Dengan kata lain : memetakan setiap titik sample ke sebuah bilangan riil menggunakan peubah acak X
Contoh Sebuah koin dilempar tiga kali; setiap lemparan akan menghasilkan head (H) atau tail (T) Sample space: Misalnya peubah acak X merupakan jumlah total tail (T) dalam ketiga eksperimen pelemparan koin tersebut, maka :
Probability Distribution Function (PDF) Definisi : PDF dari suatu peubah acak X adalah fungsi FX: [0,1] yang didefinisikan sebagai berikut PDF menentukan distribusi dari peubah acak Sifat
Kesalingbebasan statistik dari peubah acak (Statistical independence of random variables) Definisi : Peubah acak X dan Y saling bebas jika untuk semua x dan y Definisi : Peubah acak X1, …,Xn saling bebas jika untuk semua i dan xi
Peubah acak diskrit Definisi : himpunan A disebut diskrit bila Terbatas : A={x1,…,xn}, atau Tak terbatas : A={x1,x2,…} Definisi : peubah acak X disebut diskrit bila terdapat sebuah himpunan diskrit Sx sedemikian hingga Maka P{X=x} 0 untuk semua x Sx P{X=x} = 0 untuk semua x Sx Himpunan Sx disebut himpunan nilai (value set)
Peluang titik (point probabilities) Misalkan X adalah peubah acak diskrit Distribusi X ditentukan oleh peluang titik pi Definisi : probability mass function (pmf) dari X adalah merupakan fungsi pX: [0,1] yang didefinisikan sbb Pada kasus ini, PDF merupakan fungsi step
Contoh
Kesalingbebasan peubah acak Peubah acak diskrit X dan Y dikatakan saling bebas jika dan hanya jika untuk semua xiSX dan yjSy
Ekspektasi (harapan,rataan) Definisi : Harga ekspektasi (rata-rata/mean value) dari X dinyatakan oleh Sifat-sifat
Variance Definisi : Variance dari X didefinisikan sbb Rumus yang bermanfaat Sifat-sifat
Covariance Definisi : Covariance antara X dan Y didefinisikan sbb Rumus yang bermanfaat Sifat-sifat
Parameter lain yang berhubungan dengan distribusi Deviasi standard dari X Momen ke-k dari X
Distribusi Bernoulli Menyatakan suatu eksperimen acak dengan dua keluaran yang mungkin Sukses (1) Gagal (0) Nilai 1 berpeluang p (nilai 0 berpeluang (1-p))
Distribusi binomial Menyatakan jumlah sukses dalam sejumlah eksperimen acak yang saling bebas (masing-masing eksperimen bersifat Bernoulli);
Distribusi geometrik Menyatakan jumlah sukses yang terjadi sampai didapatkan kegagalan yang pertama dari sejumlah eksperimen acak yang saling bebas (masing-masing eksperimen bersifat Bernoulli) p = peluang sukses dalam suatu eksperimen
Distribusi Poisson Limit dari distribusi binomial dimana n dan p 0, sedemikian hingga np a
Contoh Asumsikan Maka jumlah panggilan yang aktif X ~ Bin(200,0.01) 200 pelanggan terhubung ke sentral lokal Trafik setiap pelanggan adalah 0.01 Pelanggan saling bebas Maka jumlah panggilan yang aktif X ~ Bin(200,0.01) Pendekatan Poisson X Poisson(2,0) Peluang titik
Peubah acak kontinu Definisi : peubah acak X kontinu jika terdapat fungsi yang dapat diintegralkan fX:+, sedemikian hingga untuk semua x Fungsi fX disebut probability density function (pdf) Himpunan SX, dimana fX>0 disebut value set Sifat-sifat
Contoh
Ekspektasi dan parameter lain Ekspektasi (nilai rata-rata/mean value) dari X didefinisikan sbb Note 2: Jika , maka Sifat sama dengan distribusi diskrit Parameter distrubusi lainnya didefinisikan dan memiliki sifat yang sama seperti pada distribusi diskrit
Distribusi Uniform (X~U(a,b), a<b)
Distribusi Eksponensial (X~Exp(l), l>0) Versi kontinu dari distribusi geometrik (peluang gagal ldt)