HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1

Slides:



Advertisements
Presentasi serupa
Dinamika Newton Kelas : X Semester : 1 Durasi : 4 x 45 menit
Advertisements

DINAMIKA Staf Pengajar Fisika TPB Departemen Fisika FMIPA IPB.
BAB 4 Dinamika dan Hukum Newton Standar Kompetensi Kompetensi Dasar
KESEIMBANGAN DI BAWAH PENGARUH GAYA YANG BERPOTONGAN
Menjelaskan Hukum Newton sebagai konsep dasar dinamika, dan mengaplikasikannya dalam persoalan-persoalan dinamika sederhana.
DINAMIKA GERAK Agenda : Jenis-jenis gaya Konsep hukum Newton
“GAYA”.
Aplikasi Hukum Newton.
Dinamika Partikel Diah Prameswari Fairuz Hilwa Nabilla Kharisma
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
KLIK , KOMPETENSI BELAJAR, UNTUK KE SLIDE SEBELUMNYA
Statika dan Dinamika Senin, 19 Februari 2007.
DINAMIKA PARTIKEL HUKUM NEWTON I,II & III; GAYA BERAT,GAYAGESEK,
DINAMIKA PARTIKEL.
Penerapan Hukum-Hukum Newton.
Gaya gesek statis Gaya gesek kinetis Gaya tegangan tali
HUKUM-HUKUM NEWTON tentang GERAK
4. DINAMIKA (lanjutan 1).
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
GERAK LURUS Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan konsep.
4. DINAMIKA.
4. DINAMIKA.
DINAMIKA PARTIKEL PEMAKAIN HUKUM NEWTON.
1 Pertemuan Dinamika Matakuliah: D0564/Fisika Dasar Tahun: September 2005 Versi: 1/1.
DINAMIKA PARTIKEL.
HUKUM NEWTON TENTANG GERAK
Berkelas.
BAB 2 GAYA.
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
Hukum Newton tentang Gerak
DINAMIKA BENDA (translasi)
DINAMIKA FISIKA I 11/5/2017 4:25 AM.
FISIKA DASAR 1A (FI- 1101) Kuliah 6 Gesekan.
HUKUM-HUKUM NEWTON Pertemuan 7-8-9
Gaya Gesek pada Bidang Miring
Mekanika Pembukaan PokokBahasan SK dan KD Materi Ajar Soal-Soal
FISIKA DASAR MUH. SAINAL ABIDIN.
Statika dan Dinamika Senin, 19 Februari 2007.
Dinamika Partikel dengan Gaya Gesekan
HUKUM-HUKUM NEWTON TENTANG GERAK DAN GESEKAN
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
Dinamika Partikel Penerapan Hukum-Hukum Newton
TEKNIK INDUSTRI – FAKULTAS TEKNIK
MOCH AHMAD M UPRI DIANA RIAN HIDAYAT RAVI RIVALDO WIKI HERMAWAN
HUKUM-HUKUM NEWTON Pertemuan 6-7-8
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
Materi 5.
22/16/2010
DINAMIKA PARTIKEL Pertemuan 6-8
Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil
Hukum Newton Tentang Gerak
Latihan Soal Dinamika Partikel
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
DINAMIKA BENDA (translasi)
Hukum-Hukum Newton MASSA benda adalah ukuran kelembamannya, sedangkan kelembamannya (inertia) adalah kecenderungan benda yang mula-mula diam untuk tetap.
HUKUM NEWTON Pendahuluan Hukum Newton
DINAMIKA tinjauan gerak benda atau partikel yang melibatkan
Dinamika FISIKA I 9/9/2018.
Modul Dinamika, Usaha, Tenaga
SMKN Jakarta Gaya 2014 SMK Bidang Keahlian Kesehatan.
DINAMIKA PARTIKEL FISIKA TEKNIK Oleh : Rina Mirdayanti, S.Si.,M.Si.
Apakah Dinamika Patikel itu?
Dinamika HUKUM NEWTON.
IMPLEMENTASI DINAMIKA PARTIKEL PERTEMUAN KE 5 FISIKA DASAR.
Dinamika partikel. Dalam bab lalu telah dibahas gerak suatu benda titik atau partikel tanpa memperhatikan penyebab gerak benda tersebut melakukan gerak.
Hukum Newton I, II, III dan Aplikasinya Tim Fisika TPB 2016
UNIVERSITAS ESA UNGGUL
Science Center Universitas Brawijaya
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
BAB 7 HUKUM NEWTON KOMPETENSI DASAR 3.7Menganalisis interaksi pada gaya serta hubungan antara gaya, massa dan gerak lurus benda serta penerapannya dalam.
Transcript presentasi:

HUKUM NEWTON BAB 5 5.1 Pendahuluan 5.2 Hukum Newton 5.1 Dinamika adalah ilmu yang mempelajari gaya sebagai penyebab gerak Hukum Newton menyatakan hubungan antara gaya, massa dan gerak benda Gaya adalah kekuatan dari luar berupa dorongan atau tarikan 5.2 Hukum Newton Isaac Newton (1643-1727) mempublikasikan hukum geraknya dan merumuskan hukum grafitasi universal 5.1

5.2.1 Hukum Newton I  F = 0 5.2.2 Hukum Newton II 5.2 Setiap benda akan tetap dalam keadaan (kecepatan = 0) atau bergerak sepanjang garis lurus dengan kecepatan konstan (bergerak lurus beraturan) kecuali bila ia dipengaruhi gaya untuk mengubah keadaannya.  F = 0 Untuk benda diam atau bergerak lurus beraturan 5.2.2 Hukum Newton II Percepatan yang dihasilkan oleh resultan gaya yang bekerja pada suatu benda berbanding lurus dengan resultan gayanya, searah dengan gaya dan berbanding terbalik dengan massa benda 5.2

Faksi = - Freaksi F = m a 5.2.3 Hukum Newton III Freaksi Faksi Jika dua buah benda berinteraksi maka gaya pada benda satu sama dan berlawanan arah dengan gaya benda lainnya m Freaksi Faksi Faksi = - Freaksi 5.3 Satuan Gaya Dimana : F = gaya m = massa a = percepatan F = m a Dalam satuan SI 5.3

5.4 Macam-macam Gaya 5.4.1 Gaya Interaksi 5.4 Untuk sistem 2 benda titik terdapat gaya-gaya : Gaya Interaksi Gaya kontak 5.4.1 Gaya Interaksi Gaya yang ditimbulkan oleh satu benda pada benda lain walaupun letaknya berjauhan Macam-macam gaya interaksi : Gaya gravitasi Gaya Listrik Gaya Magnit Definisi Medan Ruang yang merupakan daerah pengaruh gaya. Akibatnya benda-benda yang berada dalam suatu medan (medan gravitasi, medan listrik, medan magnit) akan menderita gaya (gaya gravitasi, gaya listrik, gaya magnit). 5.4

5.4.2 Gaya Kontak Gaya yang terjadi hanya pada benda-benda yang bersentuhan Macam-macam gaya kontak : Gaya Normal Gaya Gesek Gaya dorong / tarik a. Gaya Normal Gaya reaksi dari gaya berat yang dikerjakan benda terhadap bidang tempat benda terletak (benda melakukan aksi, bidang melakukan reaksi). Arah gaya normal N selalu tegak lurus pada bidang 1 N (a) mg = mg = aksi (c) 2 (b) = mg = aksi Keterangan gambar : : Benda (1) berada diatas bidang (2) : Gaya aksi pada bidang : Gaya reaksi pada benda N > 0 → Benda menekan bidang tempat benda terletak N = 0 → Benda meninggalkan bidang lintasannya N< 0 → tidak mungkin 5.5

5.6 fs  s N fs < s N fs = s N b. Gaya Gesekan Gaya yang melawan kecenderungan gerak atau gerak relatif dua benda Arah gaya gesekan selalu sejajar dengan bidang tempat benda berada dan berlawanan dengan arah gerak benda jadi gaya gesekan melawan gerak (menghambat) Macam-macam gaya gesekan : Gaya gesekan antara zat padat dan zat padat Gaya gesekan antara zat padat dan zat cair (fluida) f F Gaya Gesekan Statis (fs) Gaya gesekan yang bekerja antara 2 permukaan benda dalam keadaan diam relatif satu dengan yang lainnya fs  s N fs < s N benda diam fs = gaya gesekan statis s = Koefisien gesekan statis N = Gaya Normal fs = s N benda akan bergerak 5.6

fk = k N fk < fs 5.7 Gaya Gesekan Kinetik (fk) Gaya gesekan yang bekerja antara 2 permukaan benda yang saling bergerak relatif fk = gaya gesekan kinetik k = Koefisien gesekan kinetik N = Gaya Normal fk = k N f F N W = mg Jika benda ditarik dengan gaya F, tapi benda belum bergerak karena ada gaya gesekan fs melawan F Jika gaya F diperbesar hingga akhirnya benda bergerak, maka gaya gesekan pada saat benda bergerak fk < fs 5.7

Kemungkinan-kemungkinan : Jika F < fs Jika F = fs Jika F > fs benda diam benda tepat saat akan bergerak benda bergerak Sifat-sifat gaya gesekan Gaya gesekan tergantung : Sifat permukaan kedua benda bergesekan () Berat benda atau gaya normal 5.8

5.5 Gerak Benda pada Bidang Miring 5.5.1 Gerak benda pada bidang miring licin (tanpa ada gesekan) N y x  mg sin  mg cos  mg Gaya yang bekerja pada benda : Gaya Normal N = mg cos  Gaya Berat Diuraikan menjadi 2 komponen : W = mg Fx = mg sin  Fy = mg cos  Gaya yang menyebabkan benda bergerak pada bidang miring ke bawah (sumbu x) Fx = ma mg sin  = ma 5.9

5.5.2 Gerak benda pada bidang miring dengan adanya gesekan x  mg sin  mg cos  mg Fk F = ma mg sin  - Fk = ma Gaya yang bekerja pada benda : Gaya Normal N = mg cos  Gaya Berat W = mg Gaya Gesekan Fk = kN = kmg cos  5.10

Soal Sebuah kereta luncur yang dinaiki 3 orang dengan berat total w meluncur menuruni sebuah bukit dengan kemiringan θ. Tentukan berapa kecepatan luncur kereta tersebut jika: Lereng bukit licin Lereng bukit memiliki koefisien gesek kinetik sebesar µk 5.3

5.6 Sistem Katrol 5.11 A  k B a T mB g mA g fA NA (a) (b) Diagram bebas sistem benda A dan benda B (a) (b) 5.11

5.12 Gaya-gaya yang bekerja pada benda : NA = mA . g fA = k . mA . g Pada benda A : Gaya Normal Gaya Gesek Gaya Tegangan tali NA = mA . g fA = k . mA . g T Pada benda B : Gaya Berat Gaya Tegangan tali WB = mB . g T Jika benda bergerak maka berlaku hukum Newton II Untuk kedua benda berlaku : Untuk bidang kasar : Untuk bidang licin : 5.12

5.7 Dua Buah Benda yang Bertumpuk pada Bidang Horizontal = Pasangan aksi reaksi M2 g M1 g N2,1 N1,2 y m2 m1 (a) Balok m1 berada diatas balok m2 (b) Diagram gaya-gaya vertikal untuk tiap balok Gaya Normal pada benda m1 : Gaya Normal pada benda m2 : N1 = m1 g N2 = (m1 + m2) g 5.13

Soal-Soal