Regresi Ganda Pertemuan 21 Matakuliah : L0104/Statistika Psikologi Tahun : 2008 Regresi Ganda Pertemuan 21
Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung persamaan normal dan koefisien regresi ganda. Bina Nusantara University
Outline Materi Model regresi ganda Persamaan normal regresi ganda Persamaan regresi dugaan Koefisien determinasi regresi ganda Bina Nusantara University
Multiple Regression Multiple Regression Model Least Squares Method Multiple Coefficient of Determination Model Assumptions Testing for Significance Using the Estimated Regression Equation for Estimation and Prediction Qualitative Independent Variables Residual Analysis Bina Nusantara University
The Multiple Regression Model y = 0 + 1x1 + 2x2 + . . . + pxp + The Multiple Regression Equation E(y) = 0 + 1x1 + 2x2 + . . . + pxp The Estimated Multiple Regression Equation y = b0 + b1x1 + b2x2 + . . . + bpxp Bina Nusantara University
The Least Squares Method Least Squares Criterion Computation of Coefficients’ Values The formulas for the regression coefficients b0, b1, b2, . . . bp involve the use of matrix algebra. We will rely on computer software packages to perform the calculations. A Note on Interpretation of Coefficients bi represents an estimate of the change in y corresponding to a one-unit change in xi when all other independent variables are held constant. Bina Nusantara University
The Multiple Coefficient of Determination Relationship Among SST, SSR, SSE SST = SSR + SSE Multiple Coefficient of Determination R 2 = SSR/SST Adjusted Multiple Coefficient of Determination Bina Nusantara University