Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)

Slides:



Advertisements
Presentasi serupa
<Artificial intelligence>
Advertisements

SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2011
Bahan Kuliah IF4058 Topik Khusus IF
Logika Fuzzy.
Sistem Inferensi Fuzzy
FUZZY.
Logika Fuzzy.
FUZZY INFERENCE SYSTEMS
SISTEM PENDUKUNG KEPUTUSAN UNTUK MENENTUKAN PENERIMAAN BEASISWA BAGI MAHASISWA BERBASIS LOGIKA FUZZY ADE SYAYUTI MANNAF K
FUZZY INFERENCE SYSTEMS
LOGIKA FUZZY Kelompok Rhio Bagus P Ishak Yusuf
Logika Fuzzy.
LOGIKA FUZZY PERTEMUAN 3.
Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System
LOGIKA FUZZY .
CONTOH PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno
FUZZY LOGIC LANJUTAN.
Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI
Kuliah Sistem Fuzzy Pertemuan 5 “Sistem Inferensi Fuzzy”
Logika Fuzzy.
Model Fuzzy Tsukamoto.
Logika fuzzy.
KECERDASAN BUATAN LOGIKA FUZZY (Fuzzy Logic) Edy Mulyanto.
LOGIKA FUZZY (Lanjutan)
LOGIKA FUZZY Oleh I Joko Dewanto
LOGIKA FUZZY ABDULAH PERDAMAIAN
FUZZY INFERENCE SYSTEMS
Logika Fuzzy Lanjut.
FUZZY INFERENCE SYSTEMS
Model Fuzzy Mamdani.
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
KECERDASAN BUATAN (Artificial Intelligence) Materi 5
CARA KERJA SISTEM PAKAR
FUZZY TSUKAMOTO UTHIE.
FUZZY INFERENCE SYSTEM (FIS) - MAMDANI
FIS – Metode SUGENO Pert- 6.
Sistem Inferensi Fuzzy
REASONING FUZZY SYSTEMS.
FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS)
Kode MK : TIF01405; MK : Kecerdasan Buatan
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
<KECERDASAN BUATAN>
Fuzzy logic Fuzzy Logic Disusun oleh: Tri Nurwati.
SISTEM FUZZY.
DASAR FUZZY.
Perhitungan Membership
METODE FIS Pertemuan Ke-5.
Penyusun: Tri Nurwati (dari segala sumber :)
HEMDANI RAHENDRA HERLIANTO
Sistem Inferensi Fuzzy
Operasi Himpunan Fuzzy
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Rusmala, S.Kom., M.Kom Pertemuan 9, 10, 11
Contoh Penerapan Fuzzy System 1
Sistem Pakar teknik elektro fti unissula
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Logika Fuzzy Lanjut.
FUZZY INFERENCE SYSTEM (FIS) - SUGENO
METODE FIS Pertemuan Ke-5.
FUZZY TSUKAMOTO UTHIE.
CCM110 Matematika Diskrit Pertemuan-11, Fuzzy Inference System
Fuzzy Expert Systems.
Penalaran Logika Fuzzy
FUZZY TSUKAMOTO UTHIE.
Operator Himpunan Fuzzy
Logika Fuzzy Dr. Mesterjon,S.Kom, M.Kom.
DASAR FUZZY.
LOGIKA FUZZY. Definisi Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika klasik menyatakan.
Transcript presentasi:

Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS) Betha Nurina Sari, M.Kom

FUZZY INFERENCE SYSTEM (FIS) Metode Tsukamoto Metode Mamdani Metode Sugeno

Fuzzy Inference System (FIS) Sistem Inferensi Fuzzy Inferensi: penarikan kesimpulan Sistem inferensi fuzzy: penarikan kesimpulan dari sekumpulan kaidah fuzzy Jadi, di dalam FIS minimal harus ada dua buah kaidah fuzzy Input FIS: crisp values Output FIS: crisp values

Fuzzy Inference System (FIS) Sistem Inferensi Fuzzy

Proses-proses di dalam FIS: 1. Fuzzifikasi 2. Operasi fuzzy logic 3. Implikasi 4. Agregasi 5. Defuzzyfikasi

Fuzzyfikasi Fuzzyfikasi: proses memetakan nilai crisp (numerik) ke dalam himpunan fuzzy dan menentukan derajat keanggotaannya di dalam himpunan fuzzy. Hal ini dilakukan karena data diproses berdasarkan teori himpunan fuzzy sehingga data yang bukan dalam bentuk fuzzy harus diubah ke dalam bentuk fuzzy.

FUZZY INFERENCE SYSTEM (FIS) Fuzzifikasi Basis Pengetahuan (Rule Based) Logika Fuzzy Inference (reasoning) Defuzzifikasi

Fuzzifikasi

Fuzzifikasi

Operasi Logika Fuzzy

Implikasi Proses mendapatkan keluaran dari IF-THEN rule Metode yang umum digunakan adalah metode Mamdani Input: derajat kebenaran bagian antesenden dan fuzzy set pada bagian konsekuen Fungsi implikasi yang digunakan adalah min

IMPLIKASI

IMPLIKASI

IMPLIKASI

Agregasi atau Komposisi Jika terdapat lebih dari satu kaidah fuzzy yang dievaluasi, keluaran semua IF-THEN rule dikombinasikan menjadi sebuah fuzzy set tunggal. Metode agregasi yang digunakan adalah max atau OR terhadap semua keluaran IF-THEN rule Jika dilakukan fungsi min pada impikasi dan max pada agregasi, maka metode Mamdani disebut juga metode MIN-MAX (min-max inferencing)

Agregasi atau Komposisi

Defuzzykasi

Defuzzykasi Strategi yang umum dipakai dalam defuzzifikasi adalah menentukan bentuk kompromi terbaik. Metode-metode untuk strategi ini adalah: 1. Metode keanggotaan maximum (maxmembership) 2. Metode pusat luas (Center of Area, CoA) 3. Metode keanggotaan maksimum rata-rata (Meanmax Membership atau Middle-of-Maxima)

Defuzzifikasi

Defuzzifikasi

Defuzzifikasi

CONTOH KASUS

MODEL FUZZY MAMDANI

FUZZIFIKASI

FUZZIFIKASI

FUZZIFIKASI

FUZZIFIKASI

Kaidah / Aturan

Kaidah / Aturan

Kaidah / Aturan

Kaidah / Aturan

AGREGASI Fungsi Keanggotaan untuk hasil komposisi

DEFUZZIFIKASI

DEFUZZIFIKASI

FIS MAMDANI

FIS MAMDANI

FIS MAMDANI

FIS MAMDANI

FIS MAMDANI

MODEL FUZZI SUGENO

MODEL FUZZI SUGENO Tipe Mamdani merupakan tipe FIS standard yang umum dipakai Kelemahan FIS tipe Mamdani adalah tidak mangkus sebab harus menghitung luas daerah di bawah kurva FIS alternatif adalah FIS dengan metode Sugeno, yang diperkenalkan oleh Takagi-Sugeno-Kang.

MODEL FUZZI SUGENO Pada metode Sugeno, fuzzifikasi, operasi fuzzy, dan implikasi sama seperti metode Mamdani. Perbedaannya hanya pada agregasi dan defuzzifikasi. Jika pada metode Mamdani agregasi berupa daerah di bawah kurva, maka pada metode Sugeno agregasi berupa singleton-singleton.

MODEL FUZZI SUGENO

MODEL FUZZI SUGENO

ARTIFICIAL NEURAL NETWORKS (ANN) = JARINGAN SYARAT TIRUAN (JST) NEXT ARTIFICIAL NEURAL NETWORKS (ANN) = JARINGAN SYARAT TIRUAN (JST)