HEMDANI RAHENDRA HERLIANTO

Slides:



Advertisements
Presentasi serupa
Logika Fuzzy Stmik mdp
Advertisements

<Artificial intelligence>
Jurusan Teknik Informatika Samuel Wibisono
Ade Yusuf Yaumul Isnain
LOGIKA FUZZY Kelompok Rhio Bagus P Ishak Yusuf
Logika Fuzzy.
LOGIKA FUZZY PERTEMUAN 3.
YUSRON SUGIARTO, STP., MP., MSc
LOGIKA FUZZY.
Logika Fuzzy Jurusan Teknik Informatika Samuel Wibisono
Fuzzy Systems.
LOGIKA FUZZY .
CONTOH PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno
Kuliah Sistem Fuzzy Pertemuan 5 “Sistem Inferensi Fuzzy”
Fuzzy Set dan Fuzzy Logic
LOGIKA FUZZY Rika Harman, S.Kom.M.SI.
Kecerdasan Buatan Logika Fuzzy.
Logika fuzzy.
Kecerdasan Buatan #10 Logika Fuzzy.
Dasar Pengendali cerdas
KECERDASAN BUATAN LOGIKA FUZZY (Fuzzy Logic) Edy Mulyanto.
LOGIKA FUZZY (Lanjutan)
Kode MK :TIF , MK : Fuzzy Logic
LOGIKA FUZZY Oleh I Joko Dewanto
LOGIKA FUZZY ABDULAH PERDAMAIAN
FUZZY INFERENCE SYSTEMS
FUZZY INFERENCE SYSTEMS
KECERDASAN BUATAN (Artificial Intelligence) Materi 5
Pertemuan 9 Logika Fuzzy.
Sistem Berbasis Fuzzy Materi 1
Logika Fuzzy Jurusan Teknik Informatika Samuel Wibisono
Logika Fuzzy.
Sistem Inferensi Fuzzy
REASONING FUZZY SYSTEMS.
LOGIKA MATEMATIKA PENGANTAR LOGIKA FUZZY
LOGIKA FUZZY.
FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS)
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Fuzzy Set Pertemuan 7 : Mata kuliah :K0144/ Matematika Diskrit
<KECERDASAN BUATAN>
Pertemuan 9 Logika Fuzzy.
LOGIKA FUZZY Dosen Pengampu : Dian Tri Wiyanti, S.Si, M.Cs
Oleh : Yusuf Nurrachman, ST, MMSI
Perhitungan Membership
Logika Fuzzy.
KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
Pertemuan 11 FUZZY INFERENCE SYSTEM (FIS)
KECERDASAN BUATAN PERTEMUAN 8.
Sistem Inferensi Fuzzy
Operasi Himpunan Fuzzy
Pemanfaatan Sistem Fuzzy Sebagai Pendukung Keputusan
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
Fuzzy Systems – Bagian 1 Ide dasar fuzzy systems adalah fuzzy sets dan fuzzy logic. Fuzzy logic sudah lama dipikirkan oleh para filsuf Yunani kuno. Plato:
Sistem Berbasis Aturan Fuzzy
Sistem Pakar teknik elektro fti unissula
FUZZY INFERENCE SYSTEM (FIS) - TSUKAMOTO
LOGIKA MATEMATIKA PENGANTAR LOGIKA FUZZY.
Sistem samar (fuzzy System)
CCM110, MATEMATIKA DISKRIT Pertemuan 13-14, Sistem Fuzzy
FUZZY TSUKAMOTO UTHIE.
CCM110 Matematika Diskrit Pertemuan-11, Fuzzy Inference System
Penalaran Logika Fuzzy
FUZZY TSUKAMOTO UTHIE.
Operator Himpunan Fuzzy
Logika Fuzzy Dr. Mesterjon,S.Kom, M.Kom.
FUZZY SYSTEM.
Logika Fuzzy Pertemuan 13
FUZZY. Pendahuluan ■Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. ■Lotfi.
LOGIKA FUZZY. Definisi Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika klasik menyatakan.
Transcript presentasi:

HEMDANI RAHENDRA HERLIANTO 2012-81-218 LOGIKA FUZZY <LOGIKA MATEMATIKA> NEXT

Definisi Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Diekspresikan dalam istilah binary (0 atau 1, hitam atau putih, ya atau tidak), logika fuzzy menggantikan kebenaran boolean dengan tingkat kebenaran. Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan", dan "sangat". Dia berhubungan dengan set fuzzy dan teori kemungkinan. Dia diperkenalkan oleh Dr. Lotfi Zadeh dari Universitas California, Berkeley pada 1965. NEXT

Himpunan Fuzzy Pada himpunan tegas (crisp set), nilai keanggotaan suatu item x dalam suatu himpunan A (ditulis A[x]) memiliki 2 kemungkinan : Satu (1), artinya x adalah anggota A Nol (0), artinya x bukan anggota A Contoh 1 : Jika diketahui : S={1,2,3,4,5,6} adalah semesta pembicaraan A={1,2,3} B={3,4,5} maka : Nilai kaanggotaan 2 pada A, A[2] = 1, karena 2A Nilai kaanggotaan 4 pada A, A[4] = 0, karena 4 A NEXT

Contoh 2: “Jika suhu lebih tinggi atau sama dengan 80 oF, maka suhu disebut panas, sebaliknya disebut tidak panas” Kasus : Suhu = 100 oF, maka Panas Suhu = 80.1 oF, maka Panas Suhu = 79.9 oF, maka tidak panas Suhu = 50 oF, maka tidak panas If Suhu ≥ 80 oF, disebut panas If Suhu < 80 oF, disebut tidak panas Fungsi keanggotaan dari himpunan tegas gagal membedakan antara anggota pada himpunan yang sama Ada problem-problem yang terlalu kompleks untuk didefinisikan secara tepat NEXT

NEXT Contoh 3 : Misal variable umur dibagi menjadi 3 katagori : MUDA umur <35 tahun PAROBAYA 35 ≤ umur ≤ 55 tahun TUA umur > 55 tahun Apabila seseorang berusia 34 tahun, maka ia dikatakan MUDA Apabila seseorang berusia 35 tahun, maka ia dikatakan TIDAK MUDA Apabila seseorang berusia 35 tahun, maka ia dikatakan PAROBAYA Apabila seseorang berusia 35 tahun kurang 1 hari, maka ia dikatakan TIDAK PAROBAYA Apabila seseorang berusia 55 tahun, maka ia dikatakan TIDAK TUA Apabila seseorang berusia 55 tahun lebih ½ hari, maka ia dikatakan TUA Muda 1 [x] 35 Parobaya 55 Tua Gambar 2a. Keanggotaan himpunan biasa (crisp) umur muda dan parobaya NEXT

Himpunan Fuzzy untuk variable umur Dari sini bisa dikatakan bahwa pemakaian himpunan crisp untuk menyatakan umur sangat tidak adil, adanya perubahan kecil saja pada suatu nilai mengakibatkan perbedaan katagori yang cukup signifikan Himpunan fuzzy digunakan untuk mengantisipasi hal tersebut. Sesorang dapat masuk dalam 2 himpunan yang berbeda. MUDA dan PAROBAYA, PAROBAYA dan TUA, dsb. Seberapa besar eksistensinya dapat dilihat pada nilai/derajat keanggotaannya. Gambar berikut menunjukkan himpunan fuzzy untuk variabel umur : 0,5 1 Tua Muda 35 25 45 55 65 40 50 Parobaya [x] 0,25 Himpunan Fuzzy untuk variable umur NEXT

ATRIBUT HIMPUNAN FUZZY NEXT

FUNGSI KEANGGOTAAN HIMPUNAN FUZZY (MEMBERSHIP FUNCTION) Adalah suatu fungsi (kurva) yang menunjukkan pemetaan titik-titik input data ke dalam nilai keanggotaannya (derajat keanggotaan) yang memiliki interval antara 0 sampai 1. Ada beberapa fungsi yang bisa digunakan : Representasi linier NEXT

NEXT Representasi segitiga (triangular) Ditentukan oleh 3 parameter {a, b, c} sebagai berikut : Representasi Trapesium Ditentukan oleh 4 parameter {a,b,c,d} sebagai berikut : NEXT

Operasi Logika (Operasi Himpunan Fuzzy) Operasi logika adalah operasi yang mengkombinasikan dan memodifikasi 2 atau lebih himpunan fuzzy. Nilai keanggotaan baru hasil operasi dua himpunan disebut firing strength atau  predikat, menurut Kusumadewi (2004) ada 3 operasi dasar yang diciptakan oleh Zadeh : Operator AND, berhubungan dengan operasi intersection pada himpunan,  predikat diperoleh dengan mengambil nilai minimum antar kedua himpunan. AB = min(A[x], B[y]) Misal nilai keanggotaan umur 27 pada himpunan muda adalah MUDA[27] = 0,6 dan nilai keanggotaan 2 juta pada himpunan penghasilan TINGGI adalah GAJITINGGI[2juta] = 0,8 maka -predikat untuk usia MUDA dan berpenghasilan TINGGI adalah nilai keanggotaan minimun : MUDAGAJITINGGI = min( MUDA[27],  GAJITINGGI[2juta]) = min (0,6 ; 0,8) = 0,6 NEXT

Operator OR, berhubungan dengan operasi union pada himpunan,  predikat diperoleh dengan mengambil nilai maximum antar kedua himpunan. AB = max(A[x], B[y]) Misal nilai keanggotaan umur 27 pada himpunan muda adalah MUDA[27] = 0,6 dan nilai keanggotaan 2 juta pada himpunan penghasilan TINGGI adalah GAJITINGGI[2juta] = 0,8 maka -predikat untuk usia MUDA atau berpenghasilan TINGGI adalah nilai keanggotaan maksimum : MUDA  GAJITINGGI = max(MUDA[27], GAJITINGGI[2juta]) = max (0,6 ; 0,8) = 0,8 NEXT

Operasi NOT, berhubungan dengan operasi komplemen pada himpunan,  predikat diperoleh dengan mengurangkan nilai keanggotaan elemen pada himpunan dari 1. Misal nilai keanggotaan umur 27 pada himpunan muda adalah MUDA[27]= 0,6 maka -predikat untuk usia TIDAK MUDA adalah : MUDA’[27] = 1 - MUDA[27] = 1 - 0,6 = 0,4 NEXT

Penalaran monoton (Aturan Fuzzy If Then)   NEXT

Aturan Fuzzy If-Then (atau disebut juga aturan fuzzy, fuzzy implikasi, atau pernyataan kondisional Fuzzy) adalah aturan yang digunakan untuk merumuskan relasi conditional antara 2 atau lebih himpunan fuzzy. Bentuk umum : If (X1 is A1) (X2 is A2) … (Xn is An) Then Y is B; xi, yi skalar, dan A, B himpunan Fuzzy Menurut Kusumadewi (2004) Ada 2 fungsi implikasi yang digunakan yaitu : Min (minimum), fungsi ini akan memotong output (konsekuen) himpunan fuzzy. Dot (product), fungsi ini akan menskala output himpunan fuzzy. NEXT

Contoh Implementasi FINISH a. b. Aplikasi fungsi implikasi Min If X1 is A1 and X2 is A2 Then Y is B A1 X1 X2 Y Aplikasi fungsi implikasi Min Aplikasi fungsi implikasi Dot a. b. Gambar 4. (a) Aplikasi fungsi implikasi menggunakan operator min. (b) Aplikasi fungsi implikasi menggunakan operator dot. FINISH

THANK YOU