METODE ANALISIS TREND: Trend Non Linier

Slides:



Advertisements
Presentasi serupa
Analisis Data Berkala A. PENDAHUlUAN
Advertisements

INDEKS MUSIMAN DAN GERAKAN SIKLIS
DERET BERKALA (TIME SERIES) (2) – TREND NON-LINIER
MUHAMMAD HAJARUL ASWAD PERTEMUAN ANALISIS KORELASI 2.3. KORELASI PARSIAL 2.4. KORELASI BERGANDA.
INDEKS MUSIMAN DAN GERAKAN SIKLIS
Peramalan (Forecasting)
Oleh : Andri Wijaya, S.Pd., S.Psi., M.T.I.
BAB X Indeks Musiman & Gerakan Siklis.
REGRESI (TREND) NONLINEAR
PERAMALAN DENGAN TREND
REGRESI LINEAR BERGANDA DAN REGRESI (TREND) NONLINEAR
Regresi linier berganda dan regresi (trend) non linier
Apakah Peramalan itu ? Peramalan : seni dan ilmu untuk memperkirakan kejadian di masa depan. Hal ini dapat dilakukan denganmelibatkan pengambilan data.
METODE PENGHALUSAN EKSPONENSIAL
PERENCANAAN PERMINTAAN DALAM Supply Chain
TIME SERIES Dan PERAMALAN
INDEKS MUSIMAN DAN GERAKAN SIKLIS
STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)
STATISTIK 1 Pertemuan 14: Deret Berkala dan Peramalan (Analisis Musiman) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
FORECASTING -PERAMALAN-
STATISTIK INDUSTRI MODUL 10
Bab IX ANALISIS DATA BERKALA.
AKUNTANSI MANAJEMEN SOAL KUIS.
PERAMALAN “Proyeksi Tren”
AKUNTANSI MANAJEMEN SOAL KUIS.
Manajemen Operasional
BAB X INDEKS MUSIMAN DAN GERAKAN SIKLIS
ANALISIS TIME SERIES.
DERET BERKALA DAN PERAMALAN
DERET BERKALA DAN PERAMALAN
Analisis Perilaku Biaya
PERAMALAN DENGAN METODE SMOOTHING
BAB 3 PERILAKU BIAYA Pertemuan 3 & 4 – Minggu 2
DERET BERKALA DAN PERAMALAN
Resista Vikaliana Statistik deskriptif 2/9/2013.
BAB X Indeks Musiman & Gerakan Siklis.
Anggaran Produksi.
STATISTIK 1 Pertemuan 12-13: Deret Berkala dan Peramalan (Analisis Musiman) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
DERET BERKALA DAN PERAMALAN
Analisis Perilaku Biaya
Manajemen Operasional (Peramalan Permintaan)
ANALISIS DERET BERKALA dengan METODE SEMI AVERAGE
Deret berkala dan Peramalan Julius Nursyamsi
STATISTIK 1 Pertemuan 11: Deret Berkala dan Peramalan (Analisis Trend)
Peramalan .Manajemen Produksi #3
Indeks Musim dan Gerakan Siklis Tugas Mandiri 01 J0682
Kelompok CDM ( Cash Deposit Machine )
ANALISIS RUNTUT WAKTU Dilakukan untuk menemukan pola pertumbuhan atau perubahan masa lalu, yang dapat digunakan untuk memperkirakan pola pada masa yang.
STATISTIK 1 Pertemuan 12-13: Deret Berkala dan Peramalan (Analisis Musiman) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
BAB 7 TIME SERIES ANALYSIS Dalam peramalan, biasanya orang akan mendasarkan diri pada pola atau tingkah laku data pada masa-masa lampau. Data yang dikumpulkan.
STATISTIK BISNIS Pertemuan 6: Deret Berkala dan Peramalan (Analisis Trend) Dosen Pengampu MK: Evellin Lusiana, S.Si, M.Si.
Studi Kelayakan Bisnis (Aspek Pasar dan Pemasaran)
FORECASTING.
Tekhnik Proyeksi Bisnis
BAB 6 analisis runtut waktu
DERET BERKALA DAN PERAMALAN
STATISTIKA DESKRITIF Analisa Data Berkala dengan Metode Semi Average
06 Analisis Trend Analisis deret berkala dan peramalan
Oleh : Keti Purnamasari, S.E.,M.Si
y x TEKNIK RAMALAN DAN ANALISIS REGRESI
INDEKS MUSIMAN DAN GERAKAN SIKLIS
Manajemen Operasional
DERET BERKALA DAN PERAMALAN
PRAKTIKUM STATISTIKA INDUSTRI
DERET BERKALA DAN PERAMALAN
Manajemen Operasional
Anggaran Produksi.
STATISTIK 1 Pertemuan 13: Deret Berkala dan Peramalan (Analisis Trend)
Analisis Deret Waktu.
DERET BERKALA DAN PERAMALAN
Transcript presentasi:

METODE ANALISIS TREND: Trend Non Linier TREND KUADRATIK Merupakan trend yang nilai variabel tak bebasnya naik atau turun secara linier atau terjadi parabola bila datanya dibuat scatter plot (hubungan variabel dependen dan independen adalah kuadratik) dan merupakan metode trend non linier.

Bentuk kurva trend kuadratik:

Formulasi trend kuadratik: Ŷ = a + bX + cX2 Ŷ = Nilai trend yang diproyeksikan a,b, c = konstanta (nilai koefisien) X = waktu (tahun)

Lanjutan…….. Untuk melakukan suatu peramalan dengan metode trend kuadratik, maka kita harus mencari nilai konstanta a,b dan c terlebih dahulu dengan menggunakan rumus sebagai berikut:

Rumus 1: Dengan menggunakan rumus tiga persamaan normal: Y = n. a + b X + c X2 XY = a X + b X2 + c  X3 X2Y)= a X2 + b X3 + c X4 Jika menggunakan x dengan skala angka (…-3,-2,-1,0,1,2,3…) baik pada data ganjil maupun genap maka, X dan  X3 = 0,

Lanjutan….. sehingga persamaan diatas dapat disederhanakan menjadi: Y = n. a + c X2 XY = b X2 X2Y= a X2 + c X4

Rumus 2: (Y) (X4) – (X2Y) (X2) a = n (X4) - (X2)2 b = XY/X2 c = n(X2Y) – (X2 ) ( Y)/ n (X4) - (X2)2

Contoh soal: Hasil penjualan suatu perusahaan selama 11 tahun terakhir adalah sebagai berikut: Tahun Penjualan X X2 X3 X4 XY X2 Y 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 801 820 862 923 1.005 1.103 1.222 1.360 1.521 1.702 1.900 -5 -4 -3 -2 -1 1 2 3 4 5 25 16 9 -125 -64 -27 -8 8 27 64 125 625 256 81 -4.005 -3.280 -2.586 -1.846 -1.005 2.720 4.563 6.808 9.500 20.025 13.120 7.758 3.692 5.440 13.689 27.232 47.500  13.219 110 1.958 12.091 140.683

Next…….. n= ganjil………2005; X=0 Persamaan normal: 1. Y = n. a + c X2 2. XY = b X2 12.091=110b b= 109,92 3. X2Y= a X2 + c X4 140.683= 110a + 1.958 c

Dari persamaan 1 dan 3 13.219 = 11 a + 110 c x10 132.190 = 110 a + 1.100 c 140.683 = 110 a + 1958c 140.683 = 110 a + 1.958 c - 8.493 = -858 c c = 9,90 Dari persamaan 1 = 13.219 = 11 a + 110 c 13.219 = 11 a + 110 (9,90) 11a = 13.219 - 1.089 11 a = 12.130 a = 1.102, 73 Jadi, persamaan forecastnya= Ŷ = 1.102,73 + 109,92X + 9,90X2

Next…….. x= 6 Ŷ20I1 = 1.102,73 + 109,92(6) + 9,90(62) = 1.102,73 + 659,52 + 356,4 = 2.118,65

Latihan soal: Data jumlah pelanggan PT Telkom tahun 2002-2006sebagai berikut: Carilah persamaan trend kuadratik dan hitung peramalan jumlah pelanggan tahun 2007 s/d 2014 ! Tahun Y (jutaan) 2002 2003 2004 2005 2006 5,2 5,8 6,3 6,1 5,9 jumlah 29,3

Latihan soal: Data jumlah pelanggan PT Telkomsel tahun 2006-2010 sebagai berikut: Carilah persamaan trend kuadratik dan hitung peramalan jumlah pelanggan tahun 2011, 2012, 2013, 2014 dan 2015 ! Tahun Y (jutaan) 2006 2007 2008 2009 2010 25 30 40 35 33 jumlah 163

Jawab: Tahun Y X XY X2 X2Y X4 1997 5,0 -2 -10,00 4,00 20,00 16,00 1998 5,6 -1 -5,60 1,00 5,60 1999 6,1 0,00 2000 6,7 1 6,70 2001 7,2 2 14,40 2880   30.60 5,50 10,00 61,10 34,00 a = (Y) (X4) – (X2Y) (X2) = {(30,6)(34)-(61,1)(10)}/{(5)(34)-(10)2}=6,13   n (X4) - (X2)2 b = XY/X2 = 5,5/10=0,55 c = n(X2Y) – (X2 ) ( Y) = {(5)(61,1)-(10)(30,6)}/{(5)(34)-(10)2}=-0,0071 n (X4) - (X2)2 Jadi persamaan kuadratisnya adalah Y =6,13+0,55x-0,0071x2

Trend Non Linier : Trend Eksponensial Adalah suatu tren yang mempunyai pangkat atau eksponen dari waktunya. Bentuk persamaan eksponensial dirumuskan sebagai berikut: Y’ = a (1 + b)X Y’ = a . bX

Grafik trend eksponensial

Rumus 1: Log Ŷ = log a + x log b  log Y Log a = n  (x. log Y) Log b =  X2

Rumus 2: Y’ = a (1 + b)X Ln Y’ = Ln a + X Ln (1+b) Sehingga a = anti ln (LnY)/n b = anti ln  (X. LnY) - 1 X2

Contoh soal: Suatu perusahaan mempunyai data penjualan sebagai berikut: Y= penjualan (unit) Dengan menggunakan trend eksponensial, berapa proyeksi penjualan tahun 2001? Tahun ‘92 ‘93 ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 2000 Penjualan (Y) 72 87 104 125 150 180 216 259 311

Next….. Tahun Penjualan (Y) Log Y X X² X Log Y Ln Y X Ln Y 1992 72 1,8573 -4 16 -7,4293 4,2767 -17,1068 1993 87 1,9395 -3 9 -5,8186 4,4659 -13,3977 1994 104 2,0170 -2 4 -4,0341 4,6444 -9,2888 1995 125 2,0969 -1 1 -2,0969 4,8283 -4,8283 1996 150 2,1761 5,0106 1997 180 2,2553 5,1930 5,1983 1998 216 2,3345 2 4,6689 5,3753 10,7506 1999 259 2,4133 3 7,2399 5,5568 16,6704 2000 311 2,4928 9,9710 5,7398 22,9592 ∑ 19,5827 60 4,7564 45,0908 10,9512

Next…. 1. Log Ŷ = log a + x log b  log Y 19,5827 Log a = = = 2,1758 n 9  (x. log Y) 4,7564 Log b = = = 0,0793  X2 60

Next…….. Jadi persamaan eksponensial: Log Ŷ = log a + x log b Log Ŷ = 2,1758 + 0,0793x Peramalan Tahun 2001; x= 5 Log Ŷ2001 = 2,1758 + 0,0793(5) = 2,5723 Ŷ2001 = 373,51.

Next…. 2. Y’ = a (1 + b)X Ln Y’ = Ln a + X Ln (1+b) Sehingga a = anti ln (LnY)/n a = anti ln (45,0908)/9 a = anti ln 5,0101 a = 149,9197

Next……….. b = anti ln  (X. LnY) - 1 X2 b = anti ln 10,9512 - 1 60 b = anti ln 0,1825 - 1 b = 1,2002 – 1 = 0,2002 Jadi, persamaannya Y’ = a (1 + b)X Y’ = 149,9197 (1 + 0,2002)X Y’ = 149,9197 .1,2002X Y’2001 = 149,9197 .1,20025 Y’2001 = 149,9197. 2,4904 Y’2001 = 373,36

Contoh soal: Volume penjualan PT XYZ selama 5 tahun sejak tahun 2003 adalah 5, 6, 9, 12, dan 15 Tentukan persamaan trend eksponensialnya dan berapa forecast tahun 2008-2011?

Tahun Y X Ln Y X2 X Ln Y CONTOH TREND EKSPONENSIAL 1997 5,0 -2 1,6 4,00 -3,2 1998 5,6 -1 1,7 1,00 -1,7 1999 6,1 1,8 0,00 0,0 2000 6,7 1 1,9 2001 7,2 2 2,0 3,9   9,0 10,00 0,9 Nilai a dan b didapat dengan: a = anti ln (LnY)/n = anti ln 9/5=6,049 b = anti ln  (X. LnY) - 1 = {anti ln0,9/10}-1=0,094 (X)2 Sehingga persamaan eksponensial Y =6,049(1+0,094)x

Variasi Siklus Dalam perekonomian mengalami gelombang siklus, yaitu : Suatu perubahan atau gelombang naik dan turun dalam suatu periode dan berulang pada periode lain karena perubahan kondisi perekonomian. Dalam perekonomian mengalami gelombang siklus, yaitu : Resesi Pemulihan Ledakan - bom Krisis Mempunyai Periode disebut Lama siklus

Indek Siklus Komponen data berkala T : Tren S : Variasi musim C : Siklus I : Gerak tak beraturan Komponen data berkala Y = T x S x C x I Dimana Y, T dan S diketahui, maka CI diperoleh dengan cara : Y / S = T.C.I T.C.I adalah data normal, maka unsur tren (T) dikeluarkan C.I = TCI / T

Siklus Ingat Y = T x S x C x I Maka Di mana CI adalah Indeks Siklus TCI = Y/S CI = TCI/T Di mana CI adalah Indeks Siklus

VARIASI MUSIM Variasi musim terkait dengan perubahan atau fluktuasi dalam musim-musim atau bulan tertentu dalam 1 tahun. Variasi Musim Produk Pertanian Variasi Harga Saham Harian Variasi Inflasi Bulanan

Indeks Musim = (Rata-rata per kuartal/rata-rata total) x 100 Deret Berkala dan Peramalan Bab 6 VARIASI MUSIM DENGAN METODE RATA-RATA SEDERHANA Indeks Musim = (Rata-rata per kuartal/rata-rata total) x 100 Bulan Pendapatan Rumus= Nilai bulan ini x 100 Nilai rata-rata Indeks Musim Januari 88 (88/95) x100 93 Februari 82 (82/95) x100 86 Maret 106 (106/95) x100 112 April 98 (98/95) x100 103 Mei (112/95) x100 118 Juni 92 (92/95) x100 97 Juli 102 (102/95) x100 107 Agustus 96 (96/95) x100 101 September 105 (105/95) x100 111 Oktober 85 (85/95) x100 89 November Desember 76 (76/95) x100 80 Rata-rata 95  

Analisa gerak Tak Beraturan Gerak tak beraturan – Irregular movement Suatu perubahan kenaikan dan penurunan yang tidak beraturan baik dari sisi waktu dan lama dari siklusnya Penyabab gerak tak beraturan(peristiwa yang tidak terduga) seperti: Perang Krisis Bencana alam dll

Indeks Gerak Tak Beraturan Komponen data berkala sudah diketahui Y = T x S x C x I CI = Faktor siklus C = Siklus Maka I = CI / C

Siklus Ingat Y = T x S x C x I TCI = Y/S CI = TCI/T I = CI/C Deret Berkala dan Peramalan Bab 6 GERAK TAK BERATURAN Siklus Ingat Y = T x S x C x I TCI = Y/S CI = TCI/T I = CI/C