Dinamika FISIKA I 9/9/2018.

Slides:



Advertisements
Presentasi serupa
Dinamika Newton Kelas : X Semester : 1 Durasi : 4 x 45 menit
Advertisements

BAB 4 Dinamika dan Hukum Newton Standar Kompetensi Kompetensi Dasar
Menjelaskan Hukum Newton sebagai konsep dasar dinamika, dan mengaplikasikannya dalam persoalan-persoalan dinamika sederhana.
Kerja dan Energi Dua konsep penting dalam mekanika kerja energi
Aplikasi Hukum Newton.
FISIKA DASAR 1A (FI- 1101) Kuliah 6 Gesekan.
Statika dan Dinamika Senin, 19 Februari 2007.
DINAMIKA PARTIKEL HUKUM NEWTON I,II & III; GAYA BERAT,GAYAGESEK,
DINAMIKA PARTIKEL.
DINAMIKA.
HUKUM-HUKUM NEWTON tentang GERAK
4. DINAMIKA (lanjutan 1).
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
GERAK LURUS Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan konsep.
4. DINAMIKA.
4. DINAMIKA.
DINAMIKA PARTIKEL by Fandi Susanto.
DINAMIKA PARTIKEL PEMAKAIN HUKUM NEWTON.
1 Pertemuan Dinamika Matakuliah: D0564/Fisika Dasar Tahun: September 2005 Versi: 1/1.
DINAMIKA PARTIKEL.
DINAMIKA tinjauan gerak benda atau partikel yang melibatkan
BAB 2 GAYA.
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
Fisika Dasar Session 3: Dinamika (untuk Fakultas Pertanian)
Hukum Newton tentang Gerak
DINAMIKA BENDA (translasi)
DINAMIKA.
DINAMIKA FISIKA I 11/5/2017 4:25 AM.
FISIKA DASAR 1A (FI- 1101) Kuliah 6 Gesekan.
HUKUM-HUKUM NEWTON TENTANG GERAK DAN GESEKAN
HUKUM-HUKUM NEWTON Pertemuan 7-8-9
Mekanika Pembukaan PokokBahasan SK dan KD Materi Ajar Soal-Soal
DINAMIKA.
DINAMIKA FISIKA DASAR I POLITEKNIK UNIVERSITAS ANDALAS.
FISIKA DASAR MUH. SAINAL ABIDIN.
Statika dan Dinamika Senin, 19 Februari 2007.
HUKUM-HUKUM NEWTON TENTANG GERAK DAN GESEKAN
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
Dinamika Partikel Penerapan Hukum-Hukum Newton
TEKNIK INDUSTRI – FAKULTAS TEKNIK
DINAMIKA.
HUKUM-HUKUM NEWTON Pertemuan 6-7-8
Dinamika PART 2 26 Februari 2007.
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
Materi 5.
22/16/2010
DINAMIKA PARTIKEL Pertemuan 6-8
Hukum Newton Tentang Gerak
Latihan Soal Dinamika Partikel
HUKUM-HUKUM NEWTON tentang GERAK
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
HUKUM NEWTON BAB Pendahuluan 5.2 Hukum Newton 5.1
DINAMIKA BENDA (translasi)
Fisika Bab 4 Dinamika Partikel Aplikasi Hukum Newton II “Masalah Dua Benda Terhubung Dengan Tali Melalui Sebuah Katrol” By: NEWTON.
HUKUM NEWTON Pendahuluan Hukum Newton
DINAMIKA tinjauan gerak benda atau partikel yang melibatkan
SMKN Jakarta Gaya 2014 SMK Bidang Keahlian Kesehatan.
DINAMIKA PARTIKEL FISIKA TEKNIK Oleh : Rina Mirdayanti, S.Si.,M.Si.
Apakah Dinamika Patikel itu?
Dinamika HUKUM NEWTON.
IMPLEMENTASI DINAMIKA PARTIKEL PERTEMUAN KE 5 FISIKA DASAR.
Dinamika partikel. Dalam bab lalu telah dibahas gerak suatu benda titik atau partikel tanpa memperhatikan penyebab gerak benda tersebut melakukan gerak.
Hukum Newton I, II, III dan Aplikasinya Tim Fisika TPB 2016
UNIVERSITAS ESA UNGGUL
Science Center Universitas Brawijaya
HUKUM-HUKUM NEWTON tentang GERAK
DYNAMIC PARTICLE Hukum-hukum Newton tentang gerak menjelaskan mekanisme yang menyebabkan benda bergerak. Di sini diuraikan perubahan gerak benda dengan.
Materi Kelas X smt 1 Hukum Newton Tentang Gerak Hukum Newton 1 Hukum Newton 2 Hukum Newton 3 Standar Kompetensi : 2. Menerapkan konsep dan prinsip dasar.
HUKUM-HUKUM NEWTON tentang GERAK
BAB 7 HUKUM NEWTON KOMPETENSI DASAR 3.7Menganalisis interaksi pada gaya serta hubungan antara gaya, massa dan gerak lurus benda serta penerapannya dalam.
Transcript presentasi:

Dinamika FISIKA I 9/9/2018

SASARAN PEMBELAJARAN Mahasiswa mampu menyelesaikan persoalan gerak partikel melalui konsep gaya. FISIKA I 9/9/2018

DINAMIKA Dinamika adalah cabang dari mekanika yang mempelajari gerak benda ditinjau dari penyebabnya. Dinamika benda tidak lepas dari Hukum Newton, yaitu :   FISIKA I 9/9/2018

GAYA BERAT Gaya berat, dialami semua benda yang berada di atas permukaan bumi. Untuk benda-benda dekat permukaan mempunyai besar gaya berbanding lurus dengan massanya dan arahnya menuju ke pusat bumi, atau menuju ke bawah untuk pengamat di permukaan bumi. m W FISIKA I 9/9/2018

GAYA BERAT Gaya gravitasi : W = -mgj Besar gaya gravitasi : W = mg dengan g adalah percepatan gravitasi yang besarnya 10 m/s2 Untuk gaya gravitasi umum antara benda bermassa m1 dan m2 besarnya adalah : Dengan g menyatakan konstanta gravitasi yang besarnya G = 6,67  10-11 Nm2/kg2. FISIKA I 9/9/2018

GAYA NORMAL Gaya ini adalah gaya dari alas/lantai ketika suatu benda diletakkan pada alas tersebut. Arah dari gaya normal ini selalu tegak lurus dengan bidang alas/lantai. W N W N FISIKA I 9/9/2018

GAYA GESEKAN Gaya ini adalah gaya yang terjadi akibat adanya gesekan antara benda yang ditarik (oleh suatu gaya aksi) dengan alasnya. Arahnya selalu berlawanan dengan arah gerak relatif benda. Ada dua jenis gaya gesekan, yaitu; gaya gesekan statik dan gaya gesekan kinetik. Jika sebuah benda ditarik oleh sebuah gaya pada permukaan kasar dan ternyata benda tersebut tidak bergerak, maka pada benda tersebut bekerja gaya gesekan yang besarnya sama tetapi arahnya berlawanan. Gaya ini adalah gaya gesek statik. FISIKA I 9/9/2018

GAYA GESEK STATIK Gaya gesek statik : fs = F F = 0 a = 0 Jika gaya F diperbesar maka fs juga membesar sampai nilai maksimum, di mana jika gaya F diperbesar lagi sehingga lebih besar daripada fs maksimum maka benda bergerak. fsmax sebanding dengan gaya normal benda dan suatu konstanta, yaitu koefisien gesekan statik s. Gaya gesek statik : fsmax = sN F = 0 a = 0 F fs FISIKA I 9/9/2018

GAYA GESEK KINETIK Gaya gesek kinetik : F – fk = ma fk = kN Untuk gaya F lebih besar daripada gaya gesekan statik maksimum, benda akan bergerak dengan percepatan a. Jika benda bergerak maka gaya gesek yang bekerja adalah gaya gesek kinetik yang besarnya sebanding dengan gaya normal benda dan suatu konstanta, yaitu koefisien gesekan kinetik k. Nilai k selalu lebih kecil daripada s. FISIKA I 9/9/2018

GAYA PEGAS F xo x x Gaya pegas terjadi jika pegas ditarik dari posisi setimbangnya dan yang besarnya sebanding dengan pergeseran ujung pegas yang ditarik. Besar gaya F = k.x dengan k konstanta pegas dan x menyatakan besar pergeseran. FISIKA I 9/9/2018

GAYA SENTRIPETAL Gaya sentripetal adalah gaya total yang menuju pusat lingkaran. Sebagai contoh, sebuah benda diikat dengan tali, kemudian diputar. Maka benda tersebut akan berputar dan memiliki percepatan sentripetal. Setiap gaya yang bekerja pada suatu benda dan menghasilkan percepatan sentripetal, dikatakan sebagai gaya sentripetal. Dalam kasus ini sebagai gaya sentripetal adalah tegangan tali T. Perlu diperhatikan, arah gaya sentipetal tidak searah dengan arah gerak benda. FISIKA I 9/9/2018

KERANGKA ACUAN INERSIA Kerangka acuan inersia adalah kerangka acuan yang diam atau GLB relatif terhadap acuan yang diam. Hukum Newton berlaku dalam kerangka acuan inersia. O’ v O FISIKA I 9/9/2018

KERANGKA ACUAN NON INERSIA Kerangka acuan non inersia adalah kerangka acuan yang bergerak GLBB atau bergerak melingkar terhadap acuan yang diam. Dengan kata lain, kerangka itu bergerak dipercepat terhadap acuan diam. Dalam kerangka acuan ini hukum Newton tidak berlaku. Sebagai contoh, jika seseorang sedang berada dalam mobil yang dipercepat atau diperlambat, maka akan terasa ada dorongan atau tarikan yang terasa oleh tubuh kita padahal tidak ada gaya yang bekerja pada badan. Ini berarti tidak sesuai dengan hukum Newton. FISIKA I 9/9/2018

GAYA FIKTIF Besar gaya fiktif : Ff = ma’ Untuk memenuhi hukum Newton pada kerangka non inersia diberikan gaya fiktif sehingga gaya ini yang menyebabkan percepatan yang dialami oleh benda dalam kerangka non inersia. Contoh dari gaya fiktif adalah gaya sentripugal, yang terjadi pada kerangka acuan yang bergerak melingkar terhadap acuan yang diam. Besar gaya fiktif : Ff = ma’ Dengan a’ menyatakan percepatan kerangka acuan benda. FISIKA I 9/9/2018

DIAGRAM BENDA BEBAS Setiap benda dalam suatu sistem dipandang sebagai benda bebas yang berdiri sendiri. Gambarkan semua gaya yang mungkin terjadi dalam setiap benda dan diuraikan menjadi 2 komponen yaitu sejajar dan tegak lurus bidang kontak. N N F F Licin fs W W FISIKA I 9/9/2018

CONTOH: benda bertumpuk F m1g N1 fg1 F m1 m2 m2 fg1 m2g m1g N2 fg2 Bagaimana diagram benda bebas jika F bekerja pada m1? FISIKA I 9/9/2018

CONTOH: GAYA KONTAK F m1 m2 F m1 m2 m3 FISIKA I 9/9/2018

CONTOH: Katrol C B A m2 m1 37O 53O A B FISIKA I 9/9/2018

CONTOH 1. m2 m1 Hitung percepatan masing-masing benda dan tegangan tali pada gambar di atas jika diketahui m1 = 2 kg dan m2 = 3 kg! Anggap lantai licin. FISIKA I 9/9/2018

SOLUSI 1. Gaya yang bekerja pada benda m1 : F = m1a T = m1a Gaya yang bekerja pada benda m2 : F = m2a W2 – T = m2a Dengan menjumlahkan kedua persamaan di atas diperoleh : W2 = m2g = (m1 + m2)a Atau a = 6 m/s2 Tegangan tali T = m1a = 2.6 = 12 N FISIKA I 9/9/2018

CONTOH 2. m2 m1 Diketahui koefisien gesekan pada lantai k = 0,2 dan s = 0,3. Massa m1 = 10 kg. Tentukan : a. Massa m2 pada saat benda tersebut akan bergerak Percepatan benda jika massa m2 ditambah 1 kg b. FISIKA I 9/9/2018

SOLUSI m2 m1 T N W 2. a. Saat sistem akan bergerak, pada benda 1 tegangan tali T = fsmax. Sedangkan pada benda 2, karena tidak mengalami percepatan maka T = W2 = m2g. Dengan demikian massa benda 2 : m2 = = 3 kg FISIKA I 9/9/2018

SOLUSI 2. b. Jika massa ditambah, maka masing-masing benda mengalami percepatan. Massa m2 menjadi 4 kg. Benda A : T – fk = m1a Benda B : m2g – T = m2a Jika kedua persamaan di atas dijumlahkan diperoleh : m2g – fk = (m1 + m2)a Atau percepatan a = a = 0,14 m/s2 FISIKA I 9/9/2018

SOAL 37O 53O A B 1. Hitung percepatan masing-masing benda dan tegangan tali pada gambar di atas jika diketahui mA = 2 kg dan mB = 3 kg! Anggap lantai licin. FISIKA I 9/9/2018

SOLUSI 1. Gaya yang bekerja pada benda A : T – WAsin 37o = mAa Gaya yang bekerja pada benda B : WBsin 53o – T = mBa 37O 53O A B T a Dengan menjumlahkan persamaan di atas diperoleh : (mBsin 53o- mAsin 37o)g = (mA + mB)a Diperoleh : a = m/s2 Tegangan tali T = WAsin 37o + mAa = 16 N FISIKA I 9/9/2018

GERAK MELINGKAR Berapakah kecepatan benda bergerak? FISIKA I 9/9/2018

GERAK MELINGKAR Berapakah kecepatan maksimum mobil agar tidak tergelincir? FISIKA I 9/9/2018

SOAL 37O 53O A B Licin Kasar, k = 0,1 2. Jika massa tali dan katrol diabaikan dan percepatan gravitasi bumi 10 m/s2, maka hitung percepatan masing-masing benda untuk gambar di bawah ini ! Diketahui massa benda A = 5 kg dan massa benda B = 3 kg. FISIKA I 9/9/2018

SOLUSI 2. Dalam sistem benda seperti soal, benda A turun ke bawah. Dengan demikian persamaan geraknya adalah : WA sin37o – T – fk = mAa. 37O 53O A B T T fk a Diketahui fk = kWA cos37o. Persamaan gerak untuk benda dengan massa 3 kg adalah T – WB sin53o = mBa. Dari kedua persamaan tersebut diperoleh : WA sin37o – kWA cos37o – WB sin53o = (mA + mB)a Diperoleh : 8a = 50.0,6 – 0,1.50.0,8 – 30.0,8 atau a = ¼ m/s2 FISIKA I 9/9/2018

SOAL 3. Dua benda A (mA = 2 kg) dan B (mB = 4 kg) diletakkan seperti pada gambar. Benda B dihubungkan dengan benda C oleh sebuah tali tak bermassa. Massa mC = 6 kg. Antara benda B dengan alas mempunyai k = 0,5. Benda B dipercepat tepat pada saat benda A akan bergeser dari B. Percepatan g = 10 m/s2. Hitung koefisien gesek statik antara A dan B Hitung tegangan tali C B A FISIKA I 9/9/2018

SOLUSI Untuk benda A, gaya yang bekerja : 3. a. C B A NA Ff fs WA Ff menyatakan gaya fiktif karena kerangka acuan dari benda A, yaitu benda B, mengalami percepatan.Besar gaya fiktif Ff = mAa. Dengan a menyatakan percepatan benda B. Dengan demikian berlaku persamaan : Ff = fs atau μsNA = mAa (1) FISIKA I 9/9/2018

SOLUSI Untuk benda B, gaya yang bekerja : fk NB WA + WB T a Untuk arah percepatan persamaan gayanya adalah : T – fk = mBa (2) Dengan fk = μkNB = μk(WA + WB) = μkg(mA + mB) Untuk benda C, gaya yang bekerja : a T WC FISIKA I 9/9/2018

SOLUSI Untuk arah percepatan persamaan gayanya adalah : WC – T = mCa (3) Jika persamaan (2) dan (3) dijumlahkan, diperoleh : (mA + mB)a = [mC - μk(mA + mB)]g Atau : 6a = (6 – 0,5.6).10 = 30. Diperoleh a = 5 m/s2 Dari persamaan (1) diperoleh : μs = FISIKA I 9/9/2018